Manual de Instrucciones

Telescopios Altacimutales Maksutov-Cassegrain Serie DS-2000

Los Telescopios Refractores utilizan un lente objetivo grande como su primer elemento para reunir la luz. Los refractores de Meade, en todos los Modelos y aperturas, incluyen lentes objetivos acromáticos (conformados por dos elementos) para reducir o eliminar virtualmente el color falso (aberración cromática) que resulta de la imagen telescópica al pasar por una lente.

Los Telescopios Reflectores utilizan un espejo cóncavo para colectar la luz y formar la imagen. En el reflector newtoniano, la luz es reflejada por un espejo plano y pequeño (secundario) hacia un lado del tubo principal para que desde ahí se observe la imagen.

En contraste, el telescopio reflector utiliza un espejo cóncavo para este propósito.

¡CUIDADO!

¡Nunca utilice el Telescopio Astronómico DS-2000 Meade para ver el Sol! Ver al Sol o cerca del Sol puede causar un daño instantáneo e irreversible a sus ojos. El daño ocular es frecuentemente indoloro, por lo que el observador no recibe aviso del daño hasta que ya es muy tarde. Nunca apunte el telescopio ni su buscador hacia el Sol o cerca de él. No observe a través del telescopio o del buscador mientras el telescopio está en movimiento de búsqueda. Siempre debe existir la supervisión de un adulto durante la sesión de observación.

PRECAUCION: Sea cuidadoso al instalar las baterías en la orientación indicada por la ilustración en el compartimiento correspondiente. Siga las instrucciones que su proveedor de baterías sugiere. No instale las baterías al revés ni ponga juntas baterías nuevas y usadas. No instale distintos tipos de batería. Si no sigue estas indicaciones, las baterías pueden explotar, entrar en combustión o chorrearse. La garantía de Meade no es válida si Ud. instala las baterías contra estas indicaciones.

Si Ud. está ansioso por usar su telescopio por vez primera, lea la GUIA DE INICIO RAPIDO en la página 4.

® El nombre "Meade", "Autostar" y el Logo Meade son marcas registradas en la Oficina de Patentes de EE.UU. y en los principales países del Mundo. Todos los derechos reservados.

™ "LPI" y Tonight's Best" son marcas ® Elstradas de Meade Instruments Corporation.

© 2007 Meade Instruments Corporation. Todos los derechos reservados. Las especificaciones están sujetas a cambios sin previo aviso.

CONTENIDO

Guía de Inicio Rápido	4
Características del Telescopio	7
Características del Autostar	9
Inicio	11
Lista de Empague	11
Ensamble	11
El Buscador de Punto Roio	12
Selección del Ocular	. 13
FLI ente Barlow	13
Observación	14
Movimiento del Telescopio Manualmente	14
Observación Terrestre	14
Observación con los Botones de Dirección	14
Velocidades de Movimiento	15
Observación de la Luna	15
Observación Astronómica	15
Bastreo de un Objeto Automáticamente	15
Rasireo de un Objeto Automaticamente	16
Los Monúos del Autostar	16
Los Menues del Autostar	16
Observ de una Estrella con Seguimiente Auto	. 10
Alipopoión Edoil (Deo Estrellos)	. 17
Alineación Alt/As de sen Des Estrellas	. 17
Alineación Alt/Ac de con Dos Estrellas	. 19
Alineación Ali/Ac con una Estrella	. 19
	. 19
I ome una Excursion Guiada	19
Operación Basica del Autostar	20
Ejercicio de Navegación con el Autostar	20
Ingreso de Numeros y texto al Autostar	21
Navegacion con el Autostar	21
Ajuste de la Velocidad de un Mensaje	21
Menues y Opciones de Menu	22
Estructura Completa del Menú del Autostar	22
Menú "Object" (Objeto)	22
Menú "Event" (Evento)	23
Menú "Glossary" (Glosario)	24
Menú "Utilities" (Utilerías)	24
Menú "Setup"(Configuración)	25
Accesorios Opcionales	28
Cuidado de su telescopio	29
Colimación	29
Servicio a Clientes de Meade	31
Especificaciones	32
Apéndice A: Coordenadas Celestes	34
Localización del Polo Celeste	34
Apéndice B: Objetos Fuera de la Base de Datos	35
Apéndice C: Observación de Satélites	36
Apéndice D: Ajuste del Sistema de Motores	37
Apéndice E: Cambio de las Baterías	38
Apéndice F: Ajuste Manual de la Fecha y Hora	38
Astronomía Básica	39

GUIA DE INICIO RAPIDO

Abra el tripié: Saque el tripié de la caja y párelo verticalmente sobre el suelo. Suavemente jale las patas abriéndolas hasta que las tres lleguen a su apertura máxima. Coloque la charola portaaccesorios: coloque los tornillos como se indica en la gráfica y apriete las tuercas mariposa sin apretar demasiado.

1.

 Coloque la al tripié: Coloque la montura sobre el cabezal del tripié. Alcance, por debajo del cabezal, la perilla de aseguramiento de la montura y atorníllela en la base de la montura. No apriete demasiado. Eventualmente, podrá necesitar aflojarla y girar la montura con el telescopio (vea el paso #6).

- Coloque el plato de Montaje: Si su telescopio no viene con el plato de montaje instalado, quite los cuatro tornillos del eje de brazo de montaje. Quítelos utilizando un destornillador Phillips, ó de estrella ("+"). Afloje el candado de altitud (vea la Fig. 1ª, pág. 6) y gire el eje de montaje del brazo en contra de las manecillas del reloj (viéndolo como se ve en la gráfica anterior) hasta que tope. Apriete de nuevo el candado de altitud.
- 3b. Coloque el plato de montaje al brazo: Alinee el plato de montaje con el eje de montaje del brazo. Coloque y atornille de nuevo los tornillos que quitó en el paso 3.

4. Coloque y balancee el tubo óptico: Coloque la base del tubo óptico (A) sobre la ranura del plato de montaje (B). Atornille los dos tornillos de ajuste (C) de tal manera que aseguren el tubo óptico; no los apriete todavía. Mueva el tubo hacia delante y atrás hasta que encuentre una posición donde el tubo se mantenga horizontal (sin que se incline hacia arriba o abajo). Ahora apriete los tornillos firmemente.

 Inserte el ocular: Vista trasera de los modelos con buscador de punto rojo (H). Saque el ocular de 26 mm (D) de su estuche plástico y colóquelo en el porta-ocular (E). Apriete los tornillos de aseguramiento (F) sin apretar demasiado. Quite el cubre-polvos del final del tubo óptico. Gire la perilla de enfoque (G) para enfocar los objetos que observa.

 Coloque las baterías: Abra el compartimiento de baterías levantando la cubierta y jalándola de la base.

Remueva el porta-baterías del compartimiento y cuidadosamente desconecte el conector de 9 V . Siempre que cambie las baterías, y para asegurar la durabilidad del cableado, des-conecte el conector de 9 V (I) antes de quitar o poner las baterías.

Coloque en su lugar las ocho baterías tamaño AA, orientándolas de acuerdo a los gráficos en el portabaterías. Conecte el conector de 9 V al porta-baterías y cuidadosamente colóquelo nuevamente dentro del compartimiento. Coloque la tapa en su lugar.

 Conecte el Autostar: Asegúrese que el interruptor de encendido (J) en el panel de control esté apagado (en la posición OFF). Conecte el Controlador Autostar en el puerto HBX (K). Encienda el panel; el LED se enciende cuando el panel del telescopio tiene corriente.

 Cambie de velocidades: Ahora puede utilizar los botones de "dirección" (L) para mover el telescopio hacia arriba, abajo, derecha o izquierda. Para seleccionar una de las nueve velocidades de su telescopio, pulse brevemente el botón SPEED/? (M). Cada pulso decrece la velocidad un nivel, y entonces vuelve a la primera y más alta de manera cíclica.

 Vea por sobre el tubo de su telescopio: Vea por sobre el tubo de su telescopio para localizar un objeto. Practique utilizando los botones de dirección del Autostar para centrar un objeto en el campo de visión del telescopio.

Si desea colocar el buscador, vea la Pág. 11. Si desea inicializar el Autostar, vea la Pág. 17. Si desea alinear el telescopio, vea la Pág. 18. Si desea ver objetos automáticamente con el Autostar, vaya a la Pág. 20 y vea algunos ejemplos.

Ver al **Sol** o cerca de él casua **daño irreversibles** a su ojo. No apunte este telescopio hacia ni cerca del Sol. No observe a través del telescopio mientras éste se mueve.

CARACTERÍSTICAS DEL TELESCOPIO

Un arreglo importante de característica y controles manuales facilitan la operación del telescopio DS. Asegúrese de familiarizarse con todos estos controles antes de intentar hacer una observación con el telescopio.

- 1. Perilla de enfoque mueve el foco del telescopio en un movimiento fino para lograr una imagen clara. Gire la perilla de enfoque en dirección de las manecillas del reloj para enfocar objetos distantes, y viceversa.
- Portaocular mantiene el ocular en su lugar. También recibe el prisma diagonal a 90° (solo en modelos refractores).
- 3. Tornillo de Ajuste del Ocular mantiene en lugar el ocular. Apriételo ligeramente.
- Ocular Coloque el ocular en el portaocular y asegúrelo con el tornillo de ajuste (4, Fig. 1).
- Tornillos de Alineación del Buscador (4) ajuste estos tornillos para alinear el buscador. Vea la página 13 para más información.
- 6. Buscador provee una manera fácil de iniciar la localización de objetos ya que a través del ocular del telescopio principal se cuenta con un campo visual reducido. Vea la página 11 para más información. Vea el apartado 26 para otra alternativa diferente.
- 7. Montura de Alineación del Buscador recibe al buscador sobre el telescopio.
- Perilla de Posición del Espejo Los telescopios Maksutov-Cassegrain incluyen un espejo interno. Con la perilla en posición vertical, como se muestra en la Fig. 1d, la luz es enviada al ocular. Con la perilla en la posición horizontal, la luz es enviada hasta el puerto fotográfico del telescopio.
- 9. Seguro Vertical y Disco de Declinación
 - A. Disco de Declinación muestra las coordenadas de declinación (A, Fig. 1b).
 - B. Seguro de Vertical controla el movimiento vertical del telescopio. Girándola en contra de las manecillas del reloj libera la presión, permitiendo que el telescopio se mueva libremente en el eje vertical. Si lo gira a favor de las manecillas del reloj (sin apretar demasiado) evita que el telescopio se mueva manualmente y engarza el embrague del motor vertical para permitir la operación del Autostar (B, Fig. 1b).
- Tubo Óptico es el componente óptico principal que reúne la luz de objetos distantes y la lleva al punto de foco para observarlos con el ocular.
- 11. Tapa Cubre-Polvo jálela para quita la tapa del telescopio

Nota: La tapa debe estar colocada y el telescopio apagado siempre que no esté en uso. Asegúrese de que rocío que se pudo haber depositado en la óptica del telescopio se haya evaporado antes de colocar la tapa en tubo óptico.

- 12. Brazo de Montaje y Eje de Movimiento sostiene el arnés del tubo óptico. Se acopla al cabezal del tripié (15, Fig. 1).
- 13. Panel Computarizado de Control (Fig. 1c)
 - A. Puerto del Control de Mano (HBX) recibe el Autostar #494.
 - B. LED la luz roja indica (cuando enciende) que el controlador y los motores del telescopio están recibiendo corriente.
 - C. Interruptor ON enciende y apaga el Panel Computarizado de Control.

Nota: Cuando no vaya a utilizar el telescopio por un largo tiempo, quite las baterías.

- **D.** Puerto Auxiliar (AUX) una conexión disponible para futuros accesorios de Meade. Vea ACCESORIOS OPCIONALES, Pág. 28.
- **14.** Controlador Computarizado vea características del Autostar, págs. 8 10 para más información.
- 15. Cabezal del Tripié recibe la montura del telescopio (12, Fig. 1).
- **16. Tornillo de Aseguramiento de la Base** asegura la montura al cabezal del tripié. Aflójelo para mover la montura en sentido horizontal. Vea la página 16 para más información.
- **17. Compartimiento para Baterías –** recibe ocho baterías AA no incluidas. Vea la página 11 para mayor información.
- 18. Disco de Coordenadas de Acimut muestra las coordenadas em acimut.
- 19. Patas del Tripié abra las patas lo más posible para lograr mayor estabilidad.

- 20. Lengüetas internas de Soporte (3) le da más estabilidad al tripié y lo hace más seguro.
- Tornillos de Aseguramiento de Tubo Óptico (2) asegura el tubo óptico sobre el plato de montaje (25, Fig. 1).
- 22. Charola Porta Accesorios recibe convenientemente los oculares extras, el controlador Autostar y otros accesorios cuando no están en uso.
- **23. Tornillos de Aseguramiento de la Charola –** junto con las mariposas (no mostradas) aseguran la charola al tripié. Vea la página 11 para más información.

Nota: No es necesario remover la charola cada vez que colapse el tripié. La charola está diseñada para mantenerse entre las patas del tripié.

- 24. Seguros de las Patas del Tripié (3) levante las lengüetas para extender la sección interna de cada pata a la altura deseada. Presiónelas hacia abajo para asegurarlas.
- 25. Plato de Montaje recibe el tubo óptico (10, Fig. 1a) al brazo de montaje (12, Fig. 1a)
- 26. Buscador de Punto Rojo un buscador de tipo alterno (6, Fig. 1d). Vea el Apéndice A, en la pág. 40 para más información, Los modelos con el buscador de punto rojo también tienen otro estilo de perilla de enfoque (5, Fig. 1e).
- 27. Nivel de Burbuja y Brújula la brújula lo asistirá en la localización del Norte. EL nivel de burbuja se puede utilizar para nivelar el tubo óptico cuando ajuste la posición "Home" de inicio.

CARACTERÍSTICAS DEL AUTOSTAR

El control de los telescopios Meade de la serie DS-2000AT se realiza mediante la operación del Control de Mano Autostar #494. Casi todas las funciones del telescopio son operadas desde el Autostar con solo oprimir unos cuantos botones. Entre las bondades del Autostar encontrará:

- Capacidad de localización y búsqueda a cualquiera de los más de 1 400 objetos almacenados en su base de datos o a cualquier posición nueva mediante el ingreso de coordenadas celestes.
- La posibilidad de tomar un Tour Guiado por el cielo, deteniéndose en los objetos más bellos de la noche, en cualquier fecha del año.
- Consulta de términos astronómicos en el Glosario.
- Calcula que ocular es el mas adecuado para observar cada cuerpo celeste.

El Controlador Computarizado Autostar maneja básicamente cada función del telescopio desde un dispositivo manual compacto. Este dispositivo Autostar tiene botones de presión suave en altorrelieve. La pantalla LCD (de Cristal Liquido) esta iluminada posteriormente por un diodo emisor de luz (LED) rojo, de tal modo que la observación y la secuencia de acceso a la base de datos hacen que el Autostar sea muy amigable con el usuario.

NOTA: El Autostar no requiere baterías; las baterías del telescopio dan corriente al Autostar.

- 1. Pantalla de Cristal Líquido (LCD) de 2 renglones Muestra un par de renglones y es la interfase entre el usuario y el telescopio.
 - Renglón superior: Muestra la categoría primaria de una partida en el menú.
 - **Renglón inferior:** Contiene la opción del menú o de la información acerca de un objeto o tema, dependiendo de la función en uso.
- Botón <ENTER> Permite el acceso en secuencia al siguiente menú o nivel de datos en la base de datos del Autostar. Consulte LOS MENÚES DEL AUTOSTAR, página 16, y MENÚES Y OPCIONES DEL MENÚ, en la página 22.

NOTA: Si el botón <ENTER> es oprimido por más de dos segundos, al soltarlo escuchará un ¡BIP! y apare-cerá en la pantalla "<*ENTER*> *to Sync*". Esto es relevante

solamente si el telescopio ha sido alineado con las estrellas y esta apuntando a un cuer-po celeste. Si seleccionó *"<ENTER> to Sync"* por error, oprima *<*MODE> para regresar a la pantalla original. Consulte **ALTA PRECISION** en la página 27 si desea conocer mas detalles acerca de esta función.

 Botón <MODE> – Sirve para regresar al menú anterior o un nivel de datos previo en la base de datos del Autostar. El botón <MODE> es semejante al ESCAPE en un teclado tradicional en una computadora personal (PC).

> **NOTA:** Si presiona <MODE> al mismo tiempo que la pantalla muestra el nivel "Select Item", llevará al Autostar al mensaje de mas alto nivel: "Select Ttem: Object".

NOTA: Si presiona el botón <MODE> es por más de dos segundos, podrá consultar en pantalla la siguiente observación utilizando los botones de desplazamiento:

- Coordenadas Astronómicas de Ascensión Recta y Declinación (vea APÉNDICE A, página 35).
- Coordenadas Alt-Acimutales: Altitud (ángulo vertical – desde el horizonte)

TIPS DS-2000

Afíliate a un Club de Astronomía

Una manera agradable de aprender más de astronomía es uniéndote a un club. Busca en tu escuela, planetario o en una tienda de telescopios, para conocer si hay alguno cerca de tu casa.

En las reuniones, conocerás a otros aficionados con quienes podrás compartir tus descubrimientos. Los clubes son una excelente manera de aprender mas de cómo observar el cielo, de los mejores lugares para observar, y para conocer acerca de otros telescopios, oculares, filtros, tripiés, etc.

Usualmente, algunos miembros son excelentes astro fotógrafos. No solamente podrás ver muestras de su trabajo, sino que aprenderás algunos trucos que te servirán en tu telescopio DS-2000.

Muchos grupos salen al campo de manera regular donde podrás echar un vistazo a través de muchos otros telescopios y de otros equipos astronómicos. Las revistas como *Sky & Telescope* y *Astronomy* se publican cada mes y tienen muchos temas que te ayudaran a conocer más. También muestran calendarios de reuniones astronómicas a lo largo de los EUA y Canadá.

DEFINICIÓN:

A lo largo de este manual, vera el termino Atl/Ac (**altacimutal**) que se refiere a Altitud (vertical) y Acimut (horizontal). Alt/Ac es uno de los métodos utilizados por los aficionados para localizar estrellas en el cielo.

Fig. 3: Coloque la charola en el tripié. Atornille las tuercas mariposa.

Fig. 4: Cojinetes para que la base gire suavemente.

Fig. 5: Coloque la montura sobre el cabezal del tripié.

y Acimut (ángulo horizontal desde el norte).

- Hora Local y Tiempo Sideral Local (LST Local Sideral Time)
- Temporizador (Timer) Estado de la Alarma.
- Presione nuevamente <MODE> y volverá al menú anterior.
- 4. Botón GOTO Al oprimir este botón, el telescopio cambia su orientación hacia el objeto o coordenadas seleccionadas. Mientras el telescopio esta en movimiento, la operación puede ser interrumpida y cancelada presionando cualquier botón (excepto <GO TO>). Si desea reanudar la búsqueda y el movimiento, presione nuevamente <GO TO>.

El botón <GO TO> también permite realizar una "**búsqueda en espiral**". Una búsqueda en espiral es útil cuando el telescopio se reorienta hacia un objeto, pero el objeto no es visible en el campo del ocular. (Esto ocurre algunas veces durante el procedimiento de alineación). Presione <GO TO> cuando el telescopio ha terminado de moverse y el telescopio comenzará a moverse en un patrón de espiral a una velocidad muy lenta alrededor del área de búsqueda. Observe a través del ocular y cuando el objeto esté visible, presione <MODE> y se detendrá el movimiento. Ahora utilice las flechas de dirección para centrar el objeto.

- 5. Botones de Dirección Permiten mover el telescopio en la dirección deseada (arriba, abajo, derecha e izquierda), en cualquiera de las nueve velocidades disponibles. La selección de la velocidad se explica en VELOCIDADES DE MOVIMIENTO, página 15. Las flechas de dirección también pueden utilizarse para otras funciones:
 - Para dar de alta datos Utilizando los botones arriba y abajo le permiten recorrer el abecedario y la numeración por dígitos. El botón Abajo empieza con la letra "A" y el botón <Arriba> (▲) empieza con el digito "9". Los botones <Derecha> (►) e <lzquierda> (◄) son utilizados para desplazar el cursor de un lado a otro a lo ancho de la pantalla.
 - **Para Alineación Alt/Ac –** El uso de los botones Arriba/Abajo permiten mover el telescopio verticalmente. Los botones Derecha/Izquierda permiten moverlo horizontalmente.

Recomendación: Cuando vea un mensaje viajando por la pantalla, presione la Flecha Arriba para aumentar su velocidad y la Flecha Abajo para reducir su velocidad.

6. y 7. Botones de Desplazamiento – Permite recorrer las opciones de las bases de datos dentro de un menú. El menú se muestra en el primer renglón de la pantalla. Las opciones del menú aparecen una a la vez. Presione sin soltar la flecha de desplazamiento si desea recorrer las opciones a mayor velocidad.

Los botones de desplazamiento permiten recorrer el abecedario y dígitos numéricos.

NOTA: El botón de Desplazamiento Abajo y el botón de dirección Abajo avanzan por el abecedario (A-Z, y 0 a 9). El botón de desplazamiento Arriba y el botón de dirección Arriba se desplazan en sentido contrario (Z-A, y 9 a 0). En la lista aparecen también símbolos comunes.

 Botón Speed/? – Al presionar el botón Speed/? el Autostar le permite seleccionar una de las nueve velocidades de movimiento disponibles. Cada vez que el botón Speed/? es oprimido, la velocidad de movimiento aparecen la pantalla por dos segundos. Consulte VELOCIDADES DE MOVIMIENTO, página 16.

El botón Speed/? permite tener acceso a un archivo de ayuda "HELP". "Help" le muestra información en la pantalla de la manera de hacer uso de la función en uso.

NOTA: Si presiona brevemente el botón Speed/? solamente se consigue variar la velocidad, pero si mantiene presionado el botón un poco mas tiempo (dos segundos), entonces se ingresa al modo de Ayuda (Help).

Si tiene una pregunta acerca de la operación del Autostar, por ejemplo INITIALIZATION (Iniciación), ALIGNMENT (Alineación), etc., mantenga oprimido el botón Speed/? y siga las instrucciones que aparecen en el segundo renglón de la pantalla. Cuando vea una palabra entre [corchetes], oprima <<ENTER>> para consultar su significado en el Glosario del Autostar. Una definición o información más detallada aparecerá en pantalla. Oprima <MODE> para regresar al sistema Help del Autostar.

Cuando termine de utilizar el sistema Help, oprima <MODE> para regresar a la pantalla original y proseguir con el proceso seleccionado.

 Cable Helicoidal (no se muestra) – Conecte el cable del Autostar en el puerto HBX (A, Fig. 1c) del panel de control del telescopio.

INICIO

Fig. 6: Coloque el plato de montaje.

Fig. 7: Asegure el tubo óptico al plato de montaje utilizando los tornillos de aseguramiento.

Fig. 8a: Deslice el buscador en su base.

Fig. 9: Apriete el tornillo para evitar que el buscador se caiga de su base.

Lista de Empaque

Ensamblar el telescopio para la primera observación requiere solamente de unos minutos. Cuando abra por primera vez la caja, verifique cuidadosamente las partes enlistadas ó enunciadas en la caja.

Ensamble del Telescopio

El telescopio se acopla directamente al tripié. El telescopio de esta manera se monta de manera "altacimutal" (altitud-acimut, o vertical-horizontal). El telescopio en esta configuración se mueve a lo largo del eje vertical y horizontal, que corresponden respectivamente a los ejes de declinación y ascensión recta en el modo de observación astronómica.

- Abra el tripié: Después de sacar el tripié de su caja, párelo verticalmente, con las patas hacia abajo y el tripié todavía colapsado. Gentilmente abra las patas hasta que quede completamente abierto.
- Instale la charola al tripié: Coloque la charola (22, Fig. 1) sobre el soporte interno de las patas que tiene dos perforaciones para tornillo. Alinee las perforaciones con la charola. Inserte los dos tornillos incluidos de arriba hacia abajo (23, Fig. 1) y apriételos gentilmente con las tuercas mariposa que se incluyen (Fig. 3).

Nota: La charola no tiene que desprenderse del tripié cuando lo colapse para guardarlo al final de una sesión de observación.

3. Asegure el tripié: Gire la perilla de aseguramiento del tripié para ayudar a estabilizar y asegurar el tripié.

Precaución: Asegúrese de aflojar la perilla de aseguramiento antes de colapsar el tripié.

4. **Instale la montura al cabezal del tripié:** Primero identifique los tres cojinetes en el cabezal del tripié (**15, Fig. 1**) y los tres asientos en la montura (**12, Fig. 1**). Estos cojinetes permiten que la montura se mueva libremente dentro del cabezal del tripié.

Sostenga la montura con una mano y colóquela dentro del cabezal del tripié (no suelte la montura). Con la otra mano, alcance la perilla (**16, Fig. 1**) que está debajo el cabezal del tripié y atorníllela a la montura. No la apriete demasiado. Mientras observe, puede ser que desee aflojar esta perilla para girar la montura y el tubo óptico (vea la **Fig. 5**).

 Coloque el plato de montaje: Si su telescopio es embarcado sin el plato de montaje instalado. Quite los 4 tornillos del brazo de la montura. Desatorníllelos con un desarmador Phillips, o de estrella ("+"). Coloque los tornillos a un lado. Afloje la perilla de altitud (B en Fig. 1a) y gire el eje hacia en contra de las manecillas del reloj hasta que tope. Apriete de nueve la perilla de altitud.

Ahora, ensamble el plato de montaje al brazo. Alinee el plato de montaje con el eje del brazo. El arnés tiene una muesca que acopla con una ranura en eje de montaje. Alinee la muesca con la ranura y una las dos piezas. Esto alinea automáticamente las roscas del eje del brazo con las perforaciones del arnés. Coloque nuevamente los cuatro tornillos utilizando un desarmador Phillips, o de estrella ("+") (Fig. 6). Esta la muesca y la ranura definen los límites de movimiento del telescopio para que no golpee la base o llegue más allá de 90° (la vertical) cuando utilice el Autostar.

- 6. Coloque y balancee el tubo óptico: Coloque el tubo óptico (A, Fig. 7) en la ranura del palto de montaje (B, Fig. 7). Coloque y atornille los dos tornillos aseguramiento (C, Fig. 7) mas no lo apriete, permita que el tubo óptico se mueva libremente. Deslice el tubo hacia delante y hacia atrás hasta que encuentre la posición donde en tubo permanezca horizontal (sin que se incline hacia algún lado por sí solo). Apriete los tornillos de aseguramiento firmemente.
- Inserte el ocular: Saque el ocular de 26 mm de su contenedor plástico y colóquelo en el porta-ocular (2, Fig. 1d). Apriete el tornillos de aseguramiento (3, Fig. 1d) (no lo apriete demasiado).
- 8. Coloque el buscador de punto rojo: Deslice el buscador en su montura. Apriete el tornillo de aseguramiento para evitar que se caiga. Vea las Figs. 8 y 9.
- 9. Instale las baterías: El compartimiento de baterías del telescopio (1, Fig. 11) se localiza en la parte superior de la base de la montura. Abra el compartimiento, levantando la cubierta y separándola de la base.

Saque el portabaterías del compartimiento y cuidadosamente desconecte el conector a 9 V del portabaterías. Hágalo con mucho cuidado para evitar que se desconecte o rompa uno de los cables. Siempre que remplace las baterías se recomienda desconectar el conector de 9 V para evitar el daño del mismo o de uno de sus cables.

Inserte ocho baterías AA en el portabaterías, orientándolas como lo indican los grabados en el mismo. Conecte el conector de 9 V al portabaterías. Cuidadosamente coloque el portabaterías nuevamente en el compartimiento. Coloque la tapa.

PRECAUCIÓN: Instale las baterías de manera adecuada (cuidando su orientación). Siga las precauciones del fabricante de las baterías. No instale las baterías al revés o mezcle nuevas con usadas. No mezcle tipos de baterías. De no seguir estas recomendaciones, las baterías pueden explotar, arder, o chorrear. Las baterías instaladas inadecuadamente harán nula la garantía de Meade. Siempre quite las baterías si va a utilizar su telescopio por un tiempo prolongado.

 Conecte el Autostar: Asegúrese que el interruptor de corriente en el panel de control (C, Fig. 1c) esté en OFF. Conecte el cable del Controlador Autostar en el puerto HBX (A, Fig. 1c). Encienda el interruptor; el LED indicador se enciende cuando el panel recibe corriente. Vea la Fig. 12.

NOTA: El Autostar no requiere baterías; las baterías del telescopio abastecen de corriente al Autostar.

11. Quite la tapa cubrepolvos: Quite la tapa cubrepolvos (12, Fig. 1) del tubo óptico (13, Fig. 1).

El ensamble básico del telescopio ya está terminado.

El Buscador (ó Localizador) de Punto Rojo

Debido a que el telescopio principal tiene un campo de visión muy pequeño, la localización de objetos directamente a través del telescopio principal puede ser difícil. El buscador de punto rojo (**Fig. 13**) proyecta un pequeño punto rojo que le permite localizar los objetos con facilidad. Cuando el buscador de punto rojo y el tubo óptico están alineados, ambos apuntan al mismo lugar en el espacio. Un objeto que es localizado en el buscador, estará, por consecuencia, en el campo de visión del tubo óptico. Antes de alinear el buscador con el tubo óptico, enfoque el buscador.

Alineación del Buscador de Punto Rojo:

Es recomendable que lleve a cabo los pasos 1 al 4 de este procedimiento durante el día y el paso 5 en la noche.

- 1. Afloje la perilla bajo el cabezal del tripié (**26, Fig. 1**) y el candado de altitud (**10, Fig. 1**), girándolas aproximadamente una vuelta en contra del movimiento de las manecillas del reloj, permitiendo esto que el telescopio se mueva libremente en ambos ejes.
- Si todavía no lo ha hecho, coloque un ocular de baja magnificación (por ejemplo: 26 mm) en el telescopio principal (3, Fig. 1) y apunte el telescopio a un objeto fácil de distinguir (como la punta de un poste telefónico). Gire la perilla de enfoque (1, Fig. 1) hasta que la imagen esté en foco. Centre el objeto con precisión en el campo de visión del telescopio principal.
- 3. Apriete nuevamente la perilla bajo el cabezal del tripié (26, Fig. 1) y el candado de altitud (10, Fig. 1).
- 4. Gire el control de intensidad del buscador de punto rojo para encenderlo (y ajuste su intensidad); vea la Fig. 13). Entonces, mirando a través del buscador, gire un poco cada uno de los tornillos de alineación de la montura del buscador (8, Fig. 1) hasta que la retícula del buscador apunte con precisión al mismo objeto que está en el telescopio principal.
- 5. Revise esta alineación con un objeto ce-leste, como la Luna o una estrella brillante, y lleve a cabo cualquier ajuste fino que sea necesario.

baterías AA. Dentro del compartimiento:

(1) Compartimiento de

baterías

Fig. 12: Conecte el Autostar al puerto HBX.

Selección del Ocular

Fig. 13: Para modificar la intensidad del brillo gire el control de intensidad.

Apunte el telescopio al o cerca del Sol en ningún momento!!! Observar el Sol durante una mínima fracción de segundo, resultará en un daño instantáneo e irreversible de su ojo, así como daño físico a su telescopio.

DEFINICION:

La letra mayúscula "X" se utiliza para denotar el poder de un ocular (o un barlow) para magnificar una imagen. Por ejemplo "40X" se lee "40 poderes" El ocular amplifica la imagen formada por el objetivo del telescopio. Cada ocular tiene su propia longitud focal (L.F.) expresada en milímetros. Los oculares de menor longitud focal le darán una mayor magnificación. Por ejemplo, un ocular de 9 mm de longitud focal le dará mayor magnificación que un ocular de 25 mm de longitud focal.

Su telescopio incluye dos oculares. El ocular de 25 mm MA (Acromático Modificado) ó SP 26 mm le brindan un campo amplio – panorámico – cómodo y con alta resolución.

Los oculares de baja magnificación, ofrecen un campo amplio de visión, con imágenes brillantes y de alto contraste. El esfuerzo del ojo es mínimo, haciendo más placenteras las observaciones prolongadas. Para localizar un objeto en el telescopio comience siempre con el ocular de menor magnificación, en este caso el de 25 mm, y centre la imagen. Si desea una magnificación mayor, centre el objeto en el campo del ocular y – si las condiciones de observación lo permiten – cambie el ocular por otro de menor longitud focal (mayor aumento).

NOTA: Las condiciones de observación pueden variar mucho de una noche a otra y de lugar a lugar. Aun en las noches mas transparentes, la turbulencia del aire en la atmósfera puede distorsionar severamente las imágenes. Si la imagen de un objeto aparece borrosa, mal definida y temblorosa, reduzca la magnificación. Cambie de ocular por otro de menor magnificación y así las imágenes aparecerán mas nítidas..

El aumento, magnificación, o poder de un telescopio, esta determinado por la longitud focal (L.F.) del telescopio y la L. F. Del ocular utilizado. Para calcular los aumentos que le brinda, divida la L.F. del telescopio entre la del ocular. Como ejemplo, usted puede querer utilizar un ocular de 25 mm en su telescopio DSX-2090. Busque la L.F. del telescopio en la sección de "ESPECIFICACIONES", página 32. La L.F. es de 1 250 mm

L.F. del Telescopio ÷ L. F. del ocular = Magnificación (X)

1 250 ÷ 25 = 50x

La magnificación del ocular de 25 mm en el telescopio de 1 250 mm es aproximadamente 50X.

El Lente Barlow

Algunos telescopios Meade incluyen un lente multiplicador de magnificación llamado Barlow. Este consiste de lentes montados dentro de un tubo de 10 cm, el Barlow duplica o triplica, según sea el caso, la magnificación de la imagen en comparación con el uso del ocular por sí solo. En el ejemplo de arriba, un ocular de 25 mm da como resultado una magnificación de 50X con el telescopio DSX-2090: cuando el mismo ocular se usa junto con un Barlow 2X. la magnificación compuesta es Para utilizar el Barlow, doblada a 10X. insértelo en el prisma diagonal (en los refractores) o en el portaocular, seguido del ocular.

TIPS DS-2000

¿Demasiado Poder?

¿Puede en algún momento tener demasiado poder? Si el tipo de poder al que se refiere es a la magnificación del ocular, ¡si puede ser! El error mas común del observador iniciado es utilizar una magnificación demasiado grande para la apertura de su telescopio o para las condiciones atmosféricas del momento. Mantenga en mente que una imagen pequeña, con buena luz y de buena resolución es mucho mejor que una de mayor tamaña pero borrosa y de baja luminosidad (vea abajo). Magnificaciones arriba de 200X deben utilizarse solamente bajo condiciones atmosféricas estables.

El Autostar puede calcular el mejor ocular a utilizar. Use la herramienta "Eyepiece Calc" en el menú de utilerías (Utilities).

Es conveniente tener unos tres o cuatro oculares adicionales para lograr un rango amplio de magnificaciones razonablemente posible con los telescopios DS-2000. Vea "ACCESORIOS OPCIONALES", en la página 28.

Fig. 14a y 14b: Júpiter; un ejemplo de una magnificación excesiva.

OBSERVACIÓN

Observación Moviendo el Telescopio Manualmente

Si desea observar objetos distantes, como la cima de una montaña o un ave, puede hacerlo simplemente moviendo el telescopio de manera manual y asomándose por el ocular.

- 1. Afloje la perilla de aseguramiento de la base (26, Fig. 1) y el seguro vertical (6, Fig. 1).
- 2. Mueva el telescopio para observar señalizaciones de tránsito distantes, montañas, árboles, y otras estructuras. Utilice el buscador para ayudarse a localizar el objeto.
- Centre el objeto en la retícula del buscador y luego en el ocular del telescopio. Cuando el objeto esté centrado en su ocular, recuerde apretar los candados de la base y de movimiento vertical.
- 4. Practique el enfoque de objetos moviendo la perilla de enfoque (1, Fig. 1).
- 5. Una vez que sienta que se ha familiarizado con los movimientos del telescopio y el enfoque, intente algo más retador, como un pájaro o un ferrocarril distante en movimiento.

También puede observar estrellas y objetos en la noche utilizando este método, pero note que los objetos se saldrán del campo de visión en poco tiempo. Estos movimientos son causados por la rotación de la Tierra. Al tiempo que se familiarice con la operación del Autostar, podrá contrarrestar de manera automática este corrimiento utilizando el menú Setup del Autostar (vea **RASTREO DE UN OBJETO AUTOMÁTICAMENTE**, en la página 15), o utilizando las capacidades de la función GO TO (vea **LOCALIZACIÓN DE SATURNO**, en la página 19).

Observación Terrestre

Los telescopios DS-2000 son equipos de una excelente resolución para observación terrestre. Ver objetos terrestres requiere observar objetos distantes a través de ondas de calor. Estas ondas de calor usualmente causan degradación de la calidad de la imagen. Oculares de baja magnificación, como el de 25 mm, magnifican en mayor proporción tales ondas de calor que otros de mayor magnificación. Por lo tanto, los oculares de menor magnificación, le darán imágenes más estables y de mejor calidad. Si la imagen es borrosa o sin definición, reduzca la magnificación, donde las ondas de calor no tienen tanto efecto en la calidad de la imagen. Observar a primeras horas del día, antes que la superficie acumule calor, es mas recomendable que hacerlo por la tarde.

Observación con los Botones de Dirección

Usted puede observar objetos terrestres y astronómicos utilizando las botones de dirección del Autostar para mover el telescopio.

- 1. Asegúrese que el seguro de Declinación (**10**, **Fig. 1**) y que la perilla de aseguramiento de la base (**26**, **Fig. 1**) estén apretados como se describe en la página 11.
- 2. Verifique que el Autostar este conectado adecuadamente a su telescopio. Vea **ENSAMBLE**, en la página 11.
- 3. Encienda el telescopio, colocando el interruptor en la posición ON.

La pantalla del Autostar se enciende y aparece un mensaje de Derechos de Copyright, seguidos de un BIP corto. Entonces el Autostar toma unos momentos para iniciar el sistema.

- 4. Un mensaje lo previene acerca de la observación del Sol. Al final del mensaje, presione la tecla que le pide el Autostar para indicar que el mensaje ha sido leído y entendido.
- 5. Los botones de Dirección están ahora activados. Presione los botones de Dirección (5, Fig. 2) para mover el telescopio hacia arriba, abajo, derecha o izquierda.
- 6. Presione el botón Speed/? (8, Fig. 2) para cambiar la velocidad del telescopio. Vea **VELOCIDADES DE MOVIMIENTO**, página 15, para más información.
- Utilice el buscador (o localizador) (7, Fig. 1) para localizar un objeto y practique utilizando los botones de dirección del Autostar para centrar el objeto en el campo de visión del ocular del telescopio.
- 8. Use la perilla de enfoque (1, Fig. 1) para enfocar la imagen.

Nota Importante: Los objetos aparecen de

cabeza e invertidos de derecha a izquierda cuando se observan por el buscador. Con un telescopio refractor, los objetos que se ven por el telescopio principal con el diagonal (3, Fig. 1) se observan al derecho de arriba abajo pero invertidas de derecha a izquierda. Esto no es de consecuencia cuando observe objetos celestes, y de hecho todos los telescopios astronómicos le entregan las imágenes invertidas. Durante observación terrestre, donde una imagen corregida en sus dos ejes es deseada, puede utilizar un diagonal erector de imagen Meade a 45° (disponible en 1,25" [31,75 mm] ó 0.965" [24,5 mm] para aiustar a su modelo particular). Vea la sección de "Accesorios Opcionales", en la pág. 28, o consulte el catálogo general de Meade.

Note que para los telescopios **reflectores** no hay un accesorio que enderece la imagen; si este telescopio se desea utilizar para observación terrestres, la imagen no estará orientada adecuadamente.

NOTA:

No se asome a través del ocular o buscador del telescopio cuando éste se este moviendo rápidamente. Los niños deben contar SIEMPRE con la supervisión de un adulto.

RECOMENDACION:

Cuando un mensaje viaje en la pantalla del Autostar, presione y mantenga presionado el botón de dirección Arriba para hacer que se desplace más rápido o el de dirección Abajo para que se desplace más lentamente.

Velocidades de Movimiento

El Autostar tiene nueve velocidades que son directamente proporcionales a la tasa de movimiento sideral que es la velocidad a la que se mueven las estrellas y han sido calculadas para lograr funciones específicas. Presionando el botón Speed/? cambia la velocidad, que se muestra durante unos dos segundos en la pantalla del Autostar.

Las nueve velocidades disponibles son:

•	Velocidad 1	=	2x	=	2 x Sideral (0,5 min de arco/s ó 0,008°/s)
•	Velocidad 2	=	8x	=	8 x Sideral (2 min de arco/s ó 0,033°/s)
•	Velocidad 3	=	16x	=	16 x Sideral (4 min de arco/s ó 0,067°/s)
•	Velocidad 4	=	32x	=	32 x Sideral (8 min de arco/s ó 0,13°/s)
•	Velocidad 5	=	64x	=	64 x Sideral (16 min de arco/s ó 0,27°/s)
•	Velocidad 6	=	0,5	=	120 x Sideral (30 min de arco/s ó 0,5°/s)
•	Velocidad 7	=	1°/s	=	240 x Sideral (60 min de arco/s ó 1°s)
•	Velocidad 8	=	2°/s	=	480 x Sideral (120 min de arco/s ó 2°/s)
-	Velocidad 9	=	Max	=	480 x Sideral (Máxima velocidad posible)

Velocidades 1, 2 ó 3: Se recomiendan para centrar los objetos dentro del campo de los oculares de alta magnificación, tales como 12 o 9 mm

Velocidades 4, 5 ó 6: Permiten centrar un objeto en el campo de visión de oculares de oculares de baja magnificación, tales como el estándar de 25 mm

Velocidades 7 ú 8: Recomendadas para centrar de manera primaria los objetos en los oculares.

Velocidad 9: Mueve el telescopio rápidamente de un lugar a otro del cielo (depende del estado de las baterias).

Observación de la Luna

Apunte su telescopio hacia la Luna (note que la Luna no esta visible todas las noches) y practique utilizando las flechas de dirección y las velocidades de movimiento para revisar las distintas características físicas de nuestro satélite. La Luna tiene muchos aspectos interesantes, incluyendo cráteres, cadenas montañosas, y fallas. El mejor momento para observar la luna es durante el periodo creciente. La luz del sol incide sobre su superficie en un ángulo tal que exagera su topografía. Durante la luna llena no se aprecian sombras, causando que la superficie se vea plana y sin atractivo alguno para el observador. Considere el uso de un filtro de densidad neutra (ND) cuando observe la Luna. Este filtro no solamente reduce el resplandor, sino que también aumenta el contraste, ofreciéndole vistas más dramáticas.

Observación Astronómica

Utilizado como instrumento astronómico, su telescopio tiene muchas capacidades ópticas y electromecánicas. Es en las aplicaciones astronómicas donde su alto desempeño óptico es claramente visible. El rango de objetos astronómicos observables esta limitado solamente por la motivación del observador.

Rastreo de un Objeto Automáticamente

Debido a que la Tierra gira sobre su eje (rotación) bajo el cielo, las estrellas parecen moverse de Este a Oeste. La velocidad a la que se mueven las estrellas se llama tasa sideral. Usted puede ajustar su telescopio para que se mueva a la velocidad sideral de tal manera que "siga" automáticamente las estrellas y los demás objetos en el cielo. Si el telescopio no está siguiendo un objeto astronómico, el objeto se correrá saliéndose del campo de vista del ocular. La función de seguimiento (o rastreo) mantiene automáticamente un objeto más o menos centrado en el campo de visión del ocular.

Para seguir automáticamente objetos, primero debe acomodar su telescopio en la posición de inicio (home), entonces inicializar el Autostar, y seleccionar "Targets: Astronomical" del menú Setup del Autostar. También debe aprender la manera que opera el teclado del Autostar para moverse en los distintos niveles del Autostar.

Fig. 16: Posición Atl/Ac.

Fig. 17: Candado de Declinación y Disco de Coordenadas.

DEFINICION:

Iniciación es un procedimiento que asegura que el Autostar funciona correctamente. Cuando recién enciende el Autostar, éste no sabe cuál es la sitio de observación, ni la hora o la fecha de la sesión de observación.

En este procedimiento, usted ingresará información, tal como la fecha y hora, y la sitio de observación. El Autostar utiliza esta información para calcular con precisión la localización de objetos celestes (tales como estrellas y planetas) y mueve su telescopio correctamente en sus distintas operaciones.

La Posición "Alt/Ac" Home

- 1. Afloje el candado de Dec. del telescopio (vea Fig. 16 y 17).
- Nivele el tubo óptico: Quite el ocultar y coloque el nivel de burbuja con brújula en el portaocualr. Mueva el tubo hacia arriba y abajo hasta que la burbuja esté en el círculo central de la brújula.

Método Alterno: Nivele el tubo óptico alineando el marcador triangular con el 0 en el disco de coordenadas de Dec. (**Fig. 17**).

- 3. Apriete el candado de Dec. (Fig. 17) a mano (no apriete demasiado).
- 4. Afloje el candado de la base (**26, Fig. 1**) y gire el telescopio horizontalmente hasta que apunte hacia el Norte. Utilice la brújula para alinear su tubo óptico con la línea Norte-Sur..
- 5. Mueva el telescopio a la derecha o izquierda hasta que apunte al Norte en la brújula.
- 6. Apriete el candado de la base (26, Fig. 1). Presione <ENTER> en el Autostar.

Los Menúes del Autostar

Las funciones y base de datos del Autostar esta organizada en niveles para una navegación rápida y sencilla.

- Presione <ENTER> para pasar al siguiente nivel del menú del Autostar.
- Presione <MODE> para regresarse al nivel anterior.
- Presione los botones de desplazamiento para moverse hacia arriba o abajo a través de las opciones disponibles para cada nivel.
- Presione los Botones de Dirección para ingresar información (letras o números)

Los Botones de Dirección también se utilizan para mover el telescopio.

Iniciación el Autostar

Esta sección describe la manera de inicializar el Autostar. Lleve a cabo este procedimiento cuando encienda por primera vez su Autostar o después de efectuar un RESET de su equipo (vea **RESET**, página 27)

- 1. Asegure los candados Asegúrese que el candado de Dec. (10, Fig. 1) y la perilla de ajuste del tripié (26, Fig. 1) están apretados.
- Conecte el Autostar Verifique que el Autostar esta conectado adecuadamente a su telescopio. Vea ENSAMBLE, en la página 11.
- Encienda el Telescopio encienda el interruptor, colocándolo en la posición ON. Se activara la pantalla del Autostar y se muestra un corto mensaje de Copyright, seguido de un BIP corto. Entonces el Autostar toma uno momento para iniciar el sistema.
- Precaución de Observación Solar Se muestra un mensaje que previene la observación solar. Al final de este mensaje, presione el botón que sugiere asintiendo que el mensaje ha sido leído y comprendido.
- 5. **Brinque el Proceso de Inicio –** El Autostar le muestra un mensaje en la pantalla. Presione <ENTER> para saltar el tutorial de ayuda.
- Horario de Verano La siguiente pantalla solicita el estado de Hora de Verano (Daylight Savings Time). Presionando los botones de desplazamiento permite seleccionar YES/NO. Seleccione el valor adecuado presionando <ENTER>.

NOTA: El horario de verano puede tener distintos nombres a lo largo del mundo.

NOTA: Cuando exista la alternativa de múltiples opciones dentro de una opción de un menú, la opción actual usualmente se denota en primer lugar con una marca (>).

 Seleccione su Locación o Zona Postal – Aparece la pantalla de locación. Esta le pregunta si desea ingresar una zona postal (solo para los EUA y Canadá) o su locación por país, estado y ciudad. Presione la flecha de avance o retroceso para hacer su selección.

Nota: Los ajustes de locación (país/estado/provincia y ciudad, o zona postal) son solicitadas solamente la primera vez que enciende su Autostar. Si desea cambiar este ajuste después, utilice la opción "Site". Vea **SITE** en las págs. 26 y 27, para más información.

a. Si selecciona la opción de zona postal, el "0" a la izquierda aparecerá señalado por el cursor. Use los botones de avance y retroceso para modificarlo. Cuando haya establecido el dígito que desea presione el botón de dirección <Derecha> (►) para cambiar de posición. Repita el proceso hasta que haya ingresado su zona postal. Presione <ENTER>.

b. Si selecciona la opción de locación, la siguiente pantalla le pedirá que seleccione el país o estado/provincia (enlistado alfabéticamente). Utilice los botones de avance y retroceso

NOTA IMPORTANTE:

El Autostar le pedirá la información de su zona postal o País/Estado, Ciudad y <Modelo de telescopio solamente la primera vez que éste sea activado. Si desea cambiar esta información, utilice la opción "Site and Telescope Model" en el menú Setup. Vea la página 26 y 27 para más información.

NOTA IMPORTANTE:

Mientras que lleve a cabo el rastreo automático, use solamente los botones de dirección para mover el telescopio. Una vez que el telescopio haya sido colocado en la posición de inicio Alt/Ac, **NO** afloje los candados (**10 y 26, Fig. 1**), ni mueva el tripié manualmente, ya que perderá la alineación. para seleccionar el país, estado/provincia. La siguiente pantalla le pedirá la ciudad. Presione <ENTER> cuando haya terminado.

- Seleccione el Modelo La siguiente pantalla le pide el modelo de su telescopio. Use los botones de desplazamiento para localizar su Modelo. Presione <ENTER> cuando este en pantalla.
- 9. **Inicialización Competa –** El procedimiento de iniciación se ha terminado y la pantalla muestra "Align Easy".

Observación de una Estrella utilizando el Seguimiento Automático

En este ejemplo, los botones de flecha del Autostar se utilizan para encontrar una estrella, y después la capacidad de seguimiento del Autostar automáticamente mantiene la estrella centrada en el ocular del telescopio.

- 1. Colóquese en la posición Home Nivele el tubo óptico y apúntelo al norte. Asegúrese que el candado de Dec. (10, Fig. 1) y la perilla de la base (26, Fig. 1) estén apretadas como se describe anteriormente.
- Conecte el Autostar Verifique que el Autostar este conectado adecuadamente a su telescopio. Vea "ENSAMBLE", página 11.
- 3. Encienda el Telescopio Encienda el interruptor, colocándolo en la posición ON.
 - Se activa el Autostar y aparece un mensaje de Copyright brevemente, seguido de un BIP corto. Entonces el Autostar toma unos momentos para iniciar el sistema.
- 4. Cuidado con el Sol Aparece un mensaje que recomienda no ver al Sol. Al final de este mensaje, presione la tecla solicitada una vez que haya leído y comprendido el mensaje.
- 5. Seleccione el Horario de Verano Defina su situación con respecto al horario de verano.
- 6. Seleccione "Setup: Align" Presione <MODE> (3, Fig. 2). Aparece "Setup: Align".
- 7. Seleccione "Setup: Targets" Presione el botón de desplazamiento Abajo repetidamente hasta que aparezca "Setup: Targets. Presione <ENTER> (2, Fig. 2).
- 8. Seleccione "Targets: Astronomical" Aparece "Targets: Terrestrial. Presione cualquiera de los botones de desplazamiento una vez (6 ó 7, Fig. 2). Aparecerá "Targets: Astronomical".
- Localice una estrella Brillante Utilice los botones de flecha (5, Fig. 2) para mover el telescopio y localizar una estrella brillante en el cielo nocturno. Utilice el buscador (7, Fig. 1) para ayudarse a alinear la estrella. Puede utilizar cualquier estrella brillante que no esté obstruida para este ejemplo. Utilice los botones de flecha para centrar la estrella en el ocular.
- 10. Seguimiento Una vez que la estrella este centrada, presione <ENTER> para seleccionar "Astronomical". Los motores del telescopio comenzaran a funcionar. Pueden pasar algunos segundos antes que los motores arranquen. Cuando se muevan, puede ser necesario centrar nuevamente la estrella en el ocular. Los motores de seguimiento mantendrán la estrella que ha seleccionado en el centro del ocular.

Si desea seguir otra estrella, utilice los botones de flecha para mover el telescopio a la estrella. Centre la estrella. Los motores la mantendrán centrada en el ocular.

 Para Detener el Seguimiento – Presione <ENTER>. Aparecerá "Setup: Targets". Presione <ENTER>. Aparecerá ahora "Targets: Astronomical". Presione cualquiera de los botones de desplazamiento. Aparece "Targets: Terrestrial". Presione <ENTER>. El sistema de seguimiento se ha detenido.

Alineación Fácil (Dos Estrellas)

La manera más rápida y sencilla de localizar objetos con la capacidad GO TO del Autostar es mediante la Alineación Fácil.

El Autostar selecciona automáticamente dos estrellas de su base de datos para la Alineación Fácil. Para esto, el Autostar mueve el telescopio a la primera estrella de alineación. El usuario debe verificar que el telescopio apunte a la estrella correcta y debe centrarla en el ocular. El procedimiento se repite con una segunda estrella para completar la alineación.

NOTA: Antes de alinear el telescopio, primero revise **"INICIACIÓN DEL AUTOSTAR"**, pág. 16, haya sido llevado a cabo. Vea **"LOS MENÚES DEL AUTOSTAR"**, pág. 16, si desea conocer cómo funciona el Autostar.

Uso de la Alineación Fácil

Si acaba de encender su Autostar, realice los pasos 1 al 3. Si ya había inicializado su Autostar, entonces vaya al paso 4.

- 1. Precaución del Sol Presione el botón que le indica el Autostar para seguir.
- 2. Inicie Presione <ENTER> para continuar.
- 3. Horario de Verano Seleccione "Yes" (Si) o "No", según sea el caso. Presione <ENTER>.
- 4. Pantalla de Alineación Aparecerá "Setup: Align". Presione <ENTER>.
- 5. Seleccione la Alineación Aparecerá "Align: Easy". Presione <ENTER>.
- Posición Home Atl/Ac El Autostar le pide que coloque el telescopio en la posición de arranque (Home Alt/Ac). Colóquelo en la posición Home Alt/Ac (Fig. 16):
- 7. Alineación El Autostar escoge dos estrellas para su alineación. Cuando el telescopio se mueve a la primera estrella, puede que esta no aparezca en el campo de visión del ocular. La estrella de alineación debe ser reconocida fácilmente ya que será la más brillante en la región del cielo a la que apunta el telescopio. Use los botones de movimiento hasta que la estrella este visible y centrada en el ocular. Presione <ENTER>. Repita el procedimiento con la segunda estrella.

Cuando el procedimiento se halla llevado a cabo correctamente, aparecerá "Alignmet Succesfull" (Alineación Exitosa). De lo contrario, lleve a cabo la alineación de nuevo.

NOTA: El Autostar localiza las estrellas de alineación en base a la fecha, hora y sitio. Las estrellas cambian de noche a noche. Todo lo que necesita es que el observador centre las estrellas que seleccione el Autostar en el ocular.

NOTA: El botón <GO TO> también le permite hacer una "búsqueda en espiral". La búsqueda en espiral es útil cuando el telescopio se mueve hacia un objeto pero ese objeto no es visible en el ocular cuando éste termina su búsqueda. (Esto ocurre algunas veces durante el proceso de alineación). Presione <GO TO> cuando el movimiento ha terminado y el telescopio inicia un nuevo movimiento en espiral a una velocidad muy lenta alrededor del área de búsqueda. Mire a través del ocular y cuando el objeto esté visible, presione <MODE> para detener la búsqueda en espiral. Entonces utilice los botones de movimiento para centrar el objeto.

Otros dos métodos de alineación están disponibles para el observador: alineación con Dos Estrellas y con Una Estrella son métodos que están incluidos en caso que el observador prefiera seleccionar por sí mismo las estrellas de alineación.

TIPS DS-2000

¿Cuál es la Estrella de Alineación?

Si el Autostar ha seleccionado una estrella de alineación que no le sea familiar, como puede estar seguro que la estrella en su ocular es realmente la estrella de alineación?

La regla dice que una estrella de alineación usualmente es la estrella más brillante en esa región del cielo. Cuando usted ve una estrella de alineación en un ocular, esta se distingue dramáticamente del resto de las estrellas en esa región del cielo.

Si su telescopio no puede ver la estrella de alineación por una obstrucción, como un árbol o un edificio, o si usted duda que esté viendo la estrella correcta, no hay problema. Solamente presione el botón de desplazamiento Abajo (7, Fig. 2) y el Autostar buscará otra estrella para alinear.

Alineación Alt/Ac con Dos Estrellas

La alineación con dos estrellas requiere algo de conocimiento del cielo nocturno. La alineación con dos estrellas es idéntica a la **Alineación Fácil** (Align: Easy) (vea **Alineación Fácil (Dos Estrellas)** en la página 18), excepto que el Autostar despliega una base de datos de estrellas brillantes y dos de ellas son seleccionadas *por el observador* para realizar la alineación. Se recomienda que seleccione estrellas con las que esté familiarizado, cuando utilice este método o el de Alineación con una Estrella.

Alineación Alt/Ac con Una Estrella

La alineación con una estrella también requiere algo de conocimiento del cielo nocturno. Esta alineación es idéntica a la **Alineación Fácil** (Align: Easy) (vea Alineación Fácil (Dos Estrellas) en la página 18), excepto que el Autostar despliega una base de datos de estrellas brillantes y dos de ellas son seleccionadas *por el observador* para realizar la alineación.

NOTA IMPORTANTE: La precisión de la Alineación con Una Estrella, a diferencia del procedimiento de la Alineación con Dos Estrellas, depende en que tan bien el observador haya alineado la base del telescopio y la precisión del norte verdadero cuando se ajusta la posición de inicio (Home) (**Fig. 16**). Debido a que el método con Dos Estrellas utiliza dos estrellas con las que se alinea, es mucho más preciso que el método que utiliza una estrella.

Localización de Saturno

Después de llevar a cabo la Alineación Fácil, los motores toman control del telescopio y lo mantienen alineado con el cielo nocturno. Los objetos en el ocular deben mantenerse en su posición aún y cuando la Tierra esta rotando bajo las estrellas.

NOTA IMPOTANTE: Una vez alineado, solamente utilice el botón <GO TO> o las flechas de movimiento. **NO** afloje los candados de los ejes (**10 y 26, Fig. 1**), ni mueva la base ni el tripié manualmente, o perderá la alineación.

Aquí se muestra la manera de seleccionar un objeto celeste de la base de datos del Autostar.

NOTA: Saturno no es visible siempre y puede ser necesario que seleccione otro objeto de la base de datos del Autostar; de cualquier manera, el procedimiento, como se describe a continuación, es el mismo; solo seleccione otro objeto en el paso #3.

- 1. Después de alinear el telescopio, se muestra "Select Item: Object". Presione <ENTER>.
- 2. Se muestra "Object: Solar System". Presione <ENTER>.
- 3. Se muestra "Solar System: Mercury". Presione repetidamente el botón de desplazamiento Abajo hasta que vea "Solar System: Saturn".
- 4. Presione <ENTER>. Se muestra "Calculating...". Entonces aparece "Saturn" y un juego de coordenadas. Note que las coordenadas de los planetas cambian a lo largo del año.
- 5. Presione <GO TO>. Vera "Saturn: Slewing..." y el telescopio se mueve hasta que encuentra a Saturno. Puede ser que usted necesite usar los botones de movimiento para centrarlo en el ocular. El Autostar entonces mueve el telescopio automáticamente para que siga al planeta (o cualquier otro objeto) de tal manera que se mantenga centrado en el ocular.

Tome una Excursión Guiada (Guided Tour)

Este ejemplo muestra el uso de la Excursión Guiada "Lo Mejor de la Noche" (Tonight's Best).

- 1. Después de observar a Saturno, presione <MODE> dos veces para que aparezca "Select Item: Object" nuevamente.
- 2. Presione el botón de desplazamiento Abajo dos veces. Verá "Select Item: Guided Tour".
- Presione <ENTER>. Verá "Guided Tour: Tonight's Best". Presione <ENTER>. *NOTA:* Si desea ver otras excursiones, presione el botón de desplazamiento Abajo para ver otras alternativas. Cuando la excursión que desea esté en pantalla, presione <ENTER>.
- 4. Aparece "Tonight's Best: Searching.." Después del cálculo aparece "Tonight's Best: Júpiter" NOTA: Diferentes objetos pueden aparecer en la misma excursión en noches distintas. Presione <ENTER> para ver la información del objeto. Presione <GO TO> para mover el telescopio hacia ese objeto.
- Presione <MODE> para regresar a la lista de la Excursión. Presione los botones de desplazamiento para ver la lista. Presione <ENTER> cuando vea el siguiente objeto que desee ver.
- 6. Presione y mantenga el botón <MODE> por dos segundos para salir del menú Guided Tour.

Fig. 18: Una de las vistas celestes más bellas.

OPERACIÓN BASICA DEL AUTOSTAR

Fig. 19: El Universo del Autostar: Las seis principales categorías den Menú Select Item.

Fig. 20: Los Menúes tienen un arreglo cíclico.

Es importante comprender que las selecciones del menú están dispuestas de manera cíclica (**Fig. 20**). Esto significa que el botón de desplazamiento le permite navegar por todas las opciones para luego volver a empezar desde la primera opción. Se puede avanzar o retroceder, según se desee, oprimiendo los botones de Desplazamiento (**6**, **Fig. 2**). Esto permite dirigirse directamente hacia la opción deseada, buscando el trayecto más corto. Esta capacidad es evidente en el siguiente ejemplo.

Ejemplo:

Para navegar hacia "Select Item: Setup" desde "Select Item: Object":

1. Presione el botón de Desplazaiento Abajo (▼) 4 veces, o Arriba (▲) 1 vez.

El Autostar muestra dos líneas de información. La línea superior muestra el menú vigente. La línea inferior una opción disponible que puede ser seleccionada dentro del nivel del menú. Algunas opciones permiten seleccionar el siguiente nivel del menú (estará profundizando). Si hay opciones a escoger, las podrá consultar oprimiendo los botones de desplazamiento.

Cuando aparezca la opción deseada en la segunda línea, oprima <ENTER> para seleccionarla y estará Ud. descendiendo un nivel de la estructura del menú.

Para salir (o regresarse) – por si se equivocó -, oprime <MODE> y volverá al nivel anterior del menú.

NOTA IMPORTANTE: No importa cuantos niveles descienda, cada vez que oprima <MODE> subirá un nivel. Si continúa oprimiendo <MODE>, terminara por llegar al nivel más alto, que es: "Select Item". Si lo oprime de nuevo, le llevara a "Select Item: Object..

Ejercicio de Navegación del Autostar

Para demostrar la manera que funciona la estructura de los MENÚES, el siguiente ejercicio calcula la hora de la puesta del Sol de tal manera que se pueda planear una sesión de observación.

NOTA: Para que el cálculo sea preciso, el Autostar debe estar programado con exactitud en la Inicialización: fecha, hora y lugar de observación. Para ingresar estos datos al Autostar, vea **INICIACIÓN DEL AUTOSTAR**, pág. 16, antes de continuar con este ejercicio.

Para Calcular hora de la Puesta del Sol:

- 1. Presione <MODE> varias veces, hasta que aparezca en la pantalla "Select Item: Object"
- 2. Presione el botón de desplazamiento ▼ una vez para que aparezca la opción "Event" en el menú "Select Item".
- 3. Presione <ENTER> para seleccionar la opción "Event". Esta acción lo llevará un nivel hacia abajo. Ahora aparece "Event: Sunrise" (Amanecer).
- Presione el botón de desplazamiento ▼ para que aparezca la opción "Sunset" (Puesta de Sol) en el menú de eventos.
- 5. Presione <ENTER> para seleccionar la opción "Sunset". Esta acción lo llevará también un nivel hacia abajo.
- 6. El Autostar calcula la hora de la Puesta del Sol en base a los datos registrados: fecha, hora y lugar. Enseguida aparece en la pantalla el resultado del cálculo.
- 7. Presione <MODE> una vez para regresar. Cada vez que oprima el botón <MODE> subirá un nivel. Primero llegara al menú "Event" (Eventos).
- 8. Presione <MODE> una vez más. Subirá un nivel y llegará a "Select Item".
- 9. Presione <MODE> una vez más. Subirá un nivel y llegará a "Select Item: Object".

Ingresando Números y Texto al Autostar

Para ingresar números y texto:

 Utilice las flechas de movimiento Arriba y Abajo para seleccionar los números "0" al "9" y el alfabeto. La flecha hacia Abajo inicia con la letra "A" y la otra con el digito "9".

Para mover el cursor por la pantalla:

- Utilice los botones de dirección (flechas) Derecha o Izquierda (5, Fig.2) para mover el cursor de un espacio al siguiente en la pantalla.
- Presione <ENTER> cuando la información deseada haya sido ingresada.

Navegación entre las Opciones del Autostar

Los Menúes del Autostar están organizados para una permitir una fácil navegación:

- Presione <ENTER> para profundizar en los niveles de los Menúes del Autostar.
- Presione <MODE> (3, Fig. 2) para regresar o subir un nivel en el menú.
- Presione los botones de Desplazamiento para ver las distintas opciones.
- Presione los botones de Dirección Derecha o Izquierda para mover el cursor en la pantalla.
- Presione el botón Help/(?) para acceder la ayuda en línea.

Ajuste de la Velocidad del Mensaje en Pantalla

- Presione y mantenga el botón de desplazamiento ▲ para aumentar la velocidad a la que pasa el mensaje en la pantalla.
- Presione y mantenga el botón de desplazamiento ▼ para disminuir la velocidad a la que pasa el mensaje en la pantalla.

RECOMENDACION:

Cuando tenga opciones múltiples en un nivel del menú, la opción que actualmente se encuentra activa se encuentra generalmente primero y marcada con una flecha (›).

LOS MENÚES DEL AUTOSTAR

Menú de Objetos / Object Menu

Casi todos los procedimientos de observación dependen del Menú Object. Las excepciones incluyen *Guided Tour* (Tour Guiado) y *Landmark Survey* (Observación de Marcas Terrestres). Vea *Localización de Saturno*, página 20, para ver un ejemplo utilizando el Menú Object.

Muchos submenúes del Autostar contienen bases de datos. Una base de datos del Autostar es una lista de objetos para observar, tales como estrellas, planetas, cometas, nebulosas y más. Cuando uno de estos objetos es seleccionado, el Autostar reorienta el telescopio (si esta alineado adecuadamente) para localizarlo.

Dentro de las opciones del Menú Object se encuentran:

Solar System (Sistema Solar) es una base de datos que incluye 8 planetas (no incluye a la Tierra) desde el Sol hacia fuera, seguido de la Luna, asteroides y cometas.

Constellations (Constelaciones) es una base de datos que incluye las 88 constelaciones, cubriendo ambos hemisferios. Cuando esta opción es seleccionada y aparece una constelación en el primer renglón de la pantalla, oprima <GO TO> una vez y aparecerá en el segundo renglón el nombre de la estrella más brillante de esa constelación. Oprima nuevamente <GO TO> y el telescopio se moverá a esa estrella. Use los botones de despazamiento para recorrer en pantalla todas las estrellas de esa constelación (de mayor a menor brillo).

Deep Sky (Cielo Profundo) es una base de datos de objetos que están mas allá del Sistema Solar, tal como nebulosas, cúmulos estelares, galaxias y cuásares.

Star (Estrella) es una base de datos en la que aparecen estrellas enlistadas, en diversas categorías, tales como por su nombre (Named), dobles, variables, catálogo SAO, cercanas, etc.

Satellite (Satélite) es una base de datos de objetos en órbita terrestre tales como la Estación Espacial Internacional (IIS), el Telescopio Espacial Hubble, los satélites Iridio, satélites del Sistema de Posicionamiento Global (GPS) y satélites en orbita geosincrónica.

User Objects (Objetos del Usuario) le permite a Ud. incluir objetos celestes adicionales o de su preferencia que no se encuentren en las bases de datos del Autostar. Vea el "Apéndice B" para más información.

Landmarks (Marcas Terrestres) le permite ingresar a la base de datos del Autostar la ubicación de sitios de interés que se encuentran alrededor del sitio de observación.

NOTA IMPORTANTE: Para usar la función Landmark, el telescopio debe estar ubicado y alineado exactamente del mismo modo como se encontraba cuando ingreso los sitios de interés perimetral.

- Select (Seleccionar): Para seleccionara un sitio ya ingresado a la base de datos (vea ADD más adelante) seleccione la opción "Select" y revise la lista. Presione <ENTER> para seleccionar el sitio, entonces presione GO TO y el telescopio se moverá al lugar.
- Add (Agregar): Para agregar un sitio de interés, seleccione la opción "Add". Ingrese un nombre para el sitio y centre el sitio en el ocular, entonces presione <ENTER>.

Identify (Identificar) es una capacidad sobresaliente para el observador que desea navegar por el cielo sin rumbo definido. Usted puede explorar la bóveda celeste a voluntad, y, cuando encuentre un objeto de su interés cuyo nombre desee conocer, el Autostar se lo proporcionara. Después de alinear adecuadamente el telescopio, mueva el telescopio por el cielo con las Flechas de Movimiento. Entonces siga este procedimiento:

- 1. Cuando un objeto desconocido aparezca en el ocular y desea identificarlo, oprima <MODE> hasta que aparezca "Select Item: Object".
- 2. Oprima el botón de desplazamiento hasta que aparezca "Object: Identify:.
- Presione <ENTER>. El Autostar consultará su base de datos para identificar el objeto en el ocular.
- 4. Si el telescopio no esta centrado con precisión en un objeto de la base de datos del Autostar, este presentará el nombre del objeto más cercano a la ubicación sugerida. Presione GO TO y el telescopio centrará el objeto en el ocular.

Menú de Eventos / Event Menu

El Menú de Eventos le permite consultar fechas y hora de eventos astronómicos. La base de datos de eventos incluye:

Sunrise y **Sunset** (Salida y Puesta del Sol) calcula la hora en que el Sol sale o se pone ese día.. Para consultar la hora de salida y puesta del sol para otras fechas, vaya al Menú "Setup: Date" e ingrese la fecha de su interés. Vea **DATE**, página 25.

Moonrise y **Moonset** (Salida y Puesta de la Luna) calcula la hora en que la Luna sale o se pone ese día.. Para consultar la hora de salida y puesta del sol para otras fechas, vaya al Menú "Setup: Date" e ingrese la fecha de su interés. Vea **DATE**, página 25.

Moon Phases (Fases Lunares) presenta la fecha y hora de la siguiente Luna Llena (Full Moon), Nueva (New Moon), Cuarto Creciente (1st. Quarter) y Cuarto Menguante (Last Quarter).

Meteor Shower (Lluvias de Estrellas) presenta información sobre lluvias de estrellas venideras, como las Perséidas, Leónidas, etc. También aparecen enlistadas por fecha y el cuando alcanzan su máxima intensidad.

NOTA: Las lluvias de estrellas son estrellas fugaces (meteoros) que se mueven rápidamente por el cielo cubriendo grandes distancias en el cielo. Por tal motivo se recomienda observarlas a simple vista y no con telescopio.

Solar Eclipse (Eclipse Solar) enlista los próximos Eclipses Solares, incluyendo fecha y tipo (total, anular o parcial), y la localización y hora del primero y el último contacto de la sombra lunar. Use los botones de desplazamiento para ver la información disponible. **RECUERDE: NUNCA UTILICE EL TELESCOPIO PARA VER EL SOL**, vea "PRECAUCION" a la izquierda.

Lunar Eclipse (Eclipse Lunar) es un listado de los eclipses lunares venideros, incluyendo fecha y tipo (total, parcial o penumbral). Oprima los botones de desplazamiento para consultar la información disponible.

Min. of Algol (Mínima de Algol) se refiere al mínimo brillo que adquiere esta famosa estrella doble eclipsante. Se encuentra relativamente cerca, a 100 años luz de distancia. Cada 2,8 días y durante un período de 10 horas, Algol experimenta un cambio dramático: una de las dos estrellas en el sistema – la menos brillante – se interpone frente a la otra y el brillo del sistema decae durante este eclipse estelar. La magnitud (brillo) combinada de ambas se reduce de +2,1 a +3,4. El Autostar calcula la hora en que el eclipse es máximo y magnitud mínima.

Autum y Vernal Equinox (Equinoccio de Otoño y Primavera) calcula la fecha y hora para los equinoccios del año en curso.

Winter y Summer Solstice (Solsticio de Invierno y Verano) calcula la fecha y hora para los solsticios del año en curso.

IIIPRECAUCION!!! Nunca utilice su telescopio DS-2000 para ver al Sol! Ver al o cerca del Sol le causará daño irreversible a su ojo. El daño al ojo regularmente no se siente por lo que no hay aviso al observador que el daño ha ocurrido hasta que es demasiado tarde. No apunte su telescopio ni el buscador cerca del Sol. No se asome por el telescopio ni el buscador mientras que se está moviendo. Los niños deben contar siempre con la supervisión de un adulto.

Menú de Glosario / Glossary Menu

El Menú de Glosario enlista alfabéticamente una serie de descripciones y definiciones de los términos astronómicos más usados así como de las funciones del Autostar. Puede dirigirse directamente al Menú de Glosario o por medio de las palabras en hipertexto que aparecen en el vocabulario del Autostar. Estas palabras aparecerán identificadas por un par de [corchetes]. Las palabras en hipertexto son comunes en el Menú de Ayuda (Help) o en la descripción de un planeta o estrella. Oprima <ENTER> cuando aparezca una palabra en hipertexto y el Autostar le llevara automáticamente a la descripción del Glosario para esa palabra en particular.

Para tener acceso directamente desde Menú de Glosario, utilice los botones de desplazamiento para revisar los términos alfabéticamente. Presione <ENTER> para ver la descripción de un término en lo particular.

Menú de Utilerías / Utilities Menu

El Menú de utilerías le permite tener acceso a las funciones adicionales del Autostar, incluyendo Temporizador (Cronómetro) y una Alarma. Las funciones de este menú incluyen:

Timer (Temporizador) selecciona un contador de tiempo. Esta función es muy útil para astrofotografía y para rastreo de satélites. Vea **OBSERVACIÓN DE SATELITES**, página 36. Para hacer uso del contador, presione <ENTER>, entonces selecciones "Set" (Configurar) o "Start/Stop" (Arrancar/Parar).

- Set (Ajustar): Ingrese el tiempo deseado, en horas, minutos, y segundos, entonces presione <ENTER>.
- Start/Stop (Iniciar/Parar): Activa el contador. Use los botones de desplazamiento para seleccionar ON y OFF. Cuando vea ON, presione <ENTER> para arrancar el contador. Al llegar a 00, escuchará cuatro bips y el contador se desactivará.

Alarma (Alarma) selecciona una hora para que suene la alarma como un recordatorio. Para usarla, presione <ENTER>, entonces seleccione "Set" o "Start/Stop".

- Set (Ajustar): Ingrese la hora del dia (hora, minutos, y segundos) a la que quiera que suene la alarma.
- Start/Stop (Activar/desactivar): la alarma. Use los botones de desplazamiento para seleccionar ON y OFF. Cuando vea ON, presione <ENTER> para activarla. Cuando sea la hora, el Autostar suena la alarma. Presione <ENTER> para apagar.

Eyepiece Calcl. (Cálculo de Ocular): El Autostar calcula específicamente la información relacionada con el ocular utilizado en su modelo específico de telescopio.

- Field of View (Campo de Visión): Vea la lista de oculares disponibles con los botones de desplazamiento. Cuando selecciona un ocular, el Autostar calcula el campo de visión para su combinación del ocular con su telescopio.
- Magnification (Magnificación, Poderes o Aumentos): Oprima el botón de desplazamiento para ver un lista de oculares disponibles. Cuando selecciona un ocular, el Autostar calcula la magnificación.
- Suggest (Sugerencia): El Autostar calcula y sugiere el ocular más apropiado para observar el objeto de su interés (o centrado en el ocular), según el telescopio utilizado.

TIPS DS-2000 Recomendaciones para Principiantes

- Procure realizar sus sesiones de observación desde un lugar oscuro, alejado de fuentes de iluminación artificial (alumbrado público y luces de automóviles). Tal vez no sea posible encontrar un lugar lo suficientemente oscuro, pero cuanto más, mejor.
- De a sus ojos la oportunidad de acostumbrarse a la oscuridad. Un periodo superior a 10 minutos sin mirar directamente fuentes luminosas debe ser considerado antes de iniciar la sesión de observación. Procure descansar sus ojos cada 10 a 15 minutos para evitar el cansancio y conservar su agudez visual.
- Evite el uso de linternas tradicionales de luz blanca. Utilice fuentes que empleen Diodos Emisores de Luz (LEDs) o cubra su linterna con varias capas de celofán rojo. Esto es útil para conservar la adaptación a la oscuridad mientras instala su telescopio y consulta sus mapas. Evite deslumbrar a sus compañeros de observación y por ningún motivo apunte su linterna hacia el telescopio mientras otro observa.
- Use ropa apropiada para combatir el frío.
 Después de largos periodos nocturnos de inactividad, el cuerpo se enfría muy fácilmente.
- Practique la instalación de su equipo con luz de día antes de intentarlo en la oscuridad. Con la experiencia adquirida, será más fácil guiarse por el tacto que por la vista.
- Use primero un ocular de baja magnificación (25 mm) para observación terrestre. Y para objetos celestes dispersos, tales como cúmulos abiertos. Use oculares de mayor magnificación cuando desee ver objetos mas de cerca, como los anillos de Saturno o los cráteres de la Luna.
- Familiarícese con el sitio de observación a la luz de día. De noche es más difícil distinguir posibles obstáculos y riesgos.

Display Options (Opciones de Mensajes en Pantalla): Sirve para activar o desactivar los dos mensajes iniciales. Si los dos mensajes se desactivan, el Autostar inicia una rutina solicitando los datos de Date (Fecha).

- Sun Warning: ON/OFF, activa o desactiva el mensaje de no observar el Sol.
- Getting Started: ON/OFF, activa o desactiva el mensaje "Getting Started" (Inicio).

Brighness Adj (Ajuste de Brillo): Ajuste de brillo en la pantalla del Autostar oprimiendo los botones de desplazamiento. Cuando el Brillo sea el deseado oprima <ENTER>. **CUIDADO:** No deje ajustado el Autostar con un brillo que le impida leer la información de pantalla ya que no podrá operarlo.

Contrast Adj (Ajuste de Contraste): Ajuste el contaste de la pantalla del Autostar oprimiendo los botones de desplazamiento. Cuando el contraste sea el deseado oprima <ENTER>. **CUIDADO:** No deje ajustado el Autostar con un brillo que le impida leer la información de pantalla ya que no podrá operarlo.

NOTA: Esta operación será necesaria solamente en días de frío extremo.

Sleep Scope (Animación Suspendida) es un modo de ahorro de energía que suspende las funciones del telescopio, sin perder alineación. Seleccione "Sleep Scope" y oprima <ENTER>. El Autostar se apagará pero el reloj interno seguirá funcionando. Oprima <MODE> y el telescopio despertará de su sueño.

Park Scope (Estacione Telescopio) esta diseñado para los telescopios que se quedan fijos en un lugar, sobre un tripié o pedestal. Basta con alinear una sola vez el telescopio y al terminar la sesión de observación use esta función para estacionar el telescopio. La siguiente vez que encienda el telescopio, ingrese la fecha y hora correcta y LISTO!. Ya no requiere alinear nuevamente. Al concluir la observación, seleccione esta función y oprima <ENTER>. El telescopio se estacionará. La pantalla le recordará que apague el telescopio.

NOTA IMPORTANTE: Cuando ha seleccionado la opción "Park Telescope" y éste se ha estacionado, el Autostar es incapaz de retomar el control del telescopio. Debe apagar y volver a encender la unidad.

Cord Wrap (Enredar cable), cuando está en ON mueve el telescopio de tal manera que previene que los cables conectados al telescopio se enreden alrededor del tripié. Off (apagado) es el ajuste de fábrica.

Menú de Configuración / Menu Setup

La función principal de este menú es alinear el telescopio (vea **Alineación Fácil**, página 19). De cualquier manera, existen otras funciones disponibles.

Date (Fecha) modifica la fecha en la que el Autostar basa sus cálculos. Esta función es útil para determinar eventos astronómicos futuros y pasados. Por ejemplo: Si desea conocer la hora del atardecer dentro de tres meses, modifique la fecha y vaya a "Select Item: Event", baje un nivel y consulte en "Select Event: Sunset". Vea **EVENT MENU**, pag. 23.

Time (Hora) modifica la hora en la que el Autostar basa sus cálculos. Es fundamental que la hora sea ingresada con exactitud si deseamos que el Autostar calcule los eventos apropiadamente y oriente el telescopio con precisión. Si lo desea, puede elegir el formato militar (24 h). Seleccione la opción en blanco que sigue a las opciones "AM" y "PM".

Daylight Savings (Horario de Verano) activa o desactiva esta modificación del horario durante el verano.

NOTA: Es posible que el horario de Verano tenga otro nombre en distintos países.

- Telescope (Telescopio) permite el acceso a varias opciones. Incluye:
- **Telescope Model** (Modelo de Telescopio): Seleccione el modelo que esta utilizando conectado al Autostar.
- **Focal Length** (Longitud Focal): Informa la longitud focal del telescopio seleccionado.
- Az Ratio and Alt Ratio (Relación de Acimut y Altitud): Se refiere a la relación que guardan los engranes de movimiento horizontal y vertical en los motores del telescopio. Por ningún motivo altere los valores en modo Alt/Az de fábrica.
- Az Percent (Porcentaje de Acimut): Permite cambiar el "backlash" (retraso) que es la manera en que los botones de dirección mueven el telescopio a lo largo del eje acimutal (horizontal). Si ingresa un valor cercano a 100, el telescopio responde mas rápidamente a los botones (a 100% responde inmediatamente) al tiempo que los presiona y el telescopio se moverá mas lentamente. Si ingresa un valor cercano a 0, le tomará más tiempo al telescopio responder a los botones de movimiento y se moverá más despacio. Experimente con esta opción, Intente cambiando el valor hasta que encuentre un punto donde la respuesta a los botones le sea confortable.

Alt Percent (Porcentaje de Altitud): El porcentaje de altitud opera de manera idéntica al función Porcentaje Acimutal (vea el párrafo anterior), pero permite cambiar el retraso

Nota: La hora y la fecha están siendo mantenidas por un reloj interno de alta precisión que está ajustado previamente desde la fábrica y es alimentado por una batería de larga duración.

Remplace la batería de litio interna con otra modelo CR2023. Esta batería está localizada en el compartimiento de baterías.

Ambas baterías puede conseguirlas en cualquier lugar donde vendan baterías para cámaras fotográficas. (backlash) de altitud que es la manera en que los motores responden a los botones de movimiento.

 Train Drive (Ajuste del Sistema de Motores): Es una rutina que ajusta el sistema de motores (juego de motores y engranes) de altitud y acimut para localizar objetos con mayor precisión.

Si experimenta problemas de precisión al localizar objetos, siga el procedimiento que se describe en "APÉNDICE D: AJUSTE DEL SISTEMA DE MOTORES", página 37, para mejorar la precisión y el rastreo.

- Tracking Rate (Velocidad de Guiado): Modifica la velocidad a la que rastrea los objetos por el cielo.
 - a. **Sideral**: Es la velocidad ingresada de fábrica y compensa únicamente la rotación de la Tierra.
 - b. Lunar: Seleccione esta opción para observar la Luna por largos periodos de tiempo.
 - c. **Custom** (A su Gusto): Permite ingresar velocidades determinadas por usted.
- Reverse L/R (Invertir D/I): Invierte la respuesta de los botones de movimiento Derecha / Izquierda (o sea que el botón Izquierda movería el telescopio a la derecha).
- Reverse UP/DOWN (Invertir ARRIBA /ABAJO): Invierte la respuesta de los botones de movimiento Arriba / Abajo (o sea que el botón Abajo movería el telescopio hacia arriba).
- Quiet Slew: Ajusta la velocidad máxima a utilizar a 1,5° para así tener una operación más silenciosa.
- Max Elevation: Le permite ingresar un valor en grados que define un límite de qué tanto se puede mover el telescopio hacia arriba durante un movimiento programado (esto no evita que usted lo mueva manualmente con los botones). Esto es particularmente útil cuando tiene una cámara u otro periférico instalado en el telescopio – así puede evitar que se golpee con la base.
- Min AOS (Acquisition Signal): Le permite ingresar un valor en grados que representa la altitud a la que su telescopio comienza a seguir objetos cuando rastree satélites. Es útil cuando observa en un lugar con edificios o árboles. Por ejemplo, si desea comenzar a seguir un satélite a los 15° de altitud, en lugar de 5°. Vea Observación de Satélites, en la página 36 para más información.
- Calibrate Motor (Calibrar Motor): Si los motores del telescopio parecen tener problemas, utilice esta opción antes de intentar el Reset (Restablecimiento). También se usa esta opción si el Autostar se usa en otro telescopio, para sincronizar el Autostar con el nuevo telescopio. Para calibrar los motores, seleccione esta opción y presione <ENTER>.
- High Precision (Alta Precisión): Si esta opción está inactiva, al buscar un objeto celeste tenue (como una nebulosa o galaxia), el Autostar primeramente lleva al telescopio a una estrella cercana brillante y despliega el mensaje "<ENTER> to Sync" (<ENTER> para sincronizar). Centre la estrella en el ocular, entonces presione <ENTER>. En ese momento el telescopio tiene una alineación de precisión en esa región del cielo y luego se mueve al objeto que se le pidió originalmente.

Targets (Objetivos): Le permite intercambiar de Objetivos Astronómicos a Objetivos Terrestres. Si selecciona Objetivos Astronómicos, los motores del telescopio estarán constantemente rastreando, compensando la rotación de la Tierra. Si selecciona Objetivos Terrestres, los motores de guiado se apagan automáticamente. Para aprender como rastrear un objeto automáticamente, vea la página 16.

Site (Lugar de Observación) le ofrece acceso a distintas opciones. Incluye:

- Select (Seleccionar): Muestra en pantalla el lugar de observación y le permite seleccionar además sitios de observación adicionales que Ud. haya ingresado previamente (vea ADD más adelante). Utilice los botones de desplazamiento para ver las distintas opciones que el Autostar tiene en su base de datos. Presione <ENTER> cuando aparezca en pantalla el sitio que desea seleccionar. Utilice esta opción cuando se desplace a un sitio de observación distinto.
- Add (Agregar): Le permite agregar nuevos sitios de observación a la base de datos (máximo 6). Recorra el listado de Countries/States (Paises/Estados). Oprima <ENTER> cuando aparezca en pantalla el correcto. Del mismo modo seleccione la ciudad (City) que le corresponde (o la mas cercana a usted).
- Delete (Eliminar): Elimina uno de los sitios que estaban almacenados en memoria.
 - Edit (Editar): Permite seleccionar el sitio seleccionado: Nombre (Name), latitud y longitud y uso horario (Time Zone). Uso horario se refiere a la diferencia que existe entre la Hora Local y la hora en el meridiano 0, Tiempo Medio de Greenwich (GMT). Los habitantes al oeste de Greenwich tiene un huso horario negativo "-", y aquellos al este tienen un huso horario positivo "+". Vea los ajustes en la **Tabla 1**.

Zona	Ajuste
Atlántico	-4 Horas
Este	-5 Horas
Central	-6 Horas
Montaña	-7 Horas
Pacífico	-8 Horas
Hawai	-10 Horas
México	-6 Horas
España	+0 Horas

Tabla 1: Ajuste de Zona Horario.

NOTA: El Autostar compensa el Horario de Verano, si Ud. lo activa. Vea "Setup Menu: Daylight Saving", página 26.

Owner Info (Información del Propietario) permite ingresar a este Menú e incluye:

- Name (Nombre): Ud. puede ingresar su nombre utilizando las Flechas de Dirección Arriba y Abajo para escoger las letras y las Flechas de Dirección Izquierda y Derecha para avanzar en el texto. Cuando los datos sean correctos oprima <ENTER>.
- Address (Dirección): Utilice las Flechas de Dirección Arriba y Abajo para escoger las letras y la Flechas de Dirección Izquierda y Derecha para avanzar en el texto. Indique calle, #, ciudad, estado, país y código postal. Cuando los datos sean correctos, oprima <ENTER>.

Download (Descarga): Transfiere información desde una computadora PC u otro Autostar hacia el Autostar de su propiedad. Durante la operación, aparece un mensaje de advertencia "Downloading Do Not Turn Off" (No Apague el Telescopio mientras Descarga Información).

NOTA: La función Download requiere el Software Astrofinder #506 (opcional) y el Kit de Conectores. Vea la hoja de instrucciones adjunta con el kit para mayor información de cómo descargar. También vea **ACCESORIOS OPCIONALES**, página 28.

Statistics (Estadísticas): Le brinda información estadística del Autostar, incluyendo:

- Characters Free (Caracteres Libres): Muestra cuanto espacio tiene el Autostar disponible en su memoria.
- Version (Versión): Muestra la verdino del Autostar.

Reset: Borra del Autostar todas las rutinas y datos ingresados, regresando a las definiciones de fábrica. Por tal motivo, es necesario repetir la Sesión de Inicio antes de iniciar una sesión de observación. Vea *INICIANDO EL AUTOSTAR*, página 16.

TIPS DS-2000

Navegue por la Red

Una de las fuentes mas ricas de información astronómica es el Internet. Esta está llena de sitios donde podrá encontrar imágenes frescas, noticias de última hora y descubrimientos recientes. Por ejemplo, cuando el Cometa Hale-Bopp pasó cerca del Sol en 1997, fue posible admirar las fotografías que los astrónomos tomaban del cometa día a día.

Usted puede encontrar sitios relacionados casi con cualquier tema astronómico. Intente una búsqueda con las siguientes palabras clave: NASA, Hubble, HST, astronomía, Messier, satélite, nebulosa, hoyo negro, estrellas variables, etc.

Visite nuestro sitio para recibir asistencia técnica y conocer los productos más recientes. Puede también descargar actualizaciones del Software para el Autostar, ligas a otros sitios de interés, coordenadas a objetos celestes y la información más reciente para la localización y rastreo de satélites con su Autostar. Vea la página 37 para mas información. Encontrara nuestro sitio en:

http://www.meade.com

Otros sitios de interés que recomendamos visitar son:

Sky & Telescope: <u>http://www.skypub.com</u> Astronomy: <u>http://astronomy.com/astro/</u> The Starfield: <u>http://users.nac.net/gburke/</u>

Fotografia Astronómica del Día:

http://antwrp.gsfc.nasa.goc./apod/

Heaven's Above (info. de satellites):

http://www.heavens-above.com/

Atlas Fotográfico de la Luna:

http://www.lpi.ursa.edu/research/lunar-orbiter Imágenes Publicas del Telescopio Espacial Hubble:

http:// oposite.stsci.edu/pubinfo/pictures.html

Kosmos en México: http://www.kosmos.com.mx

ACCESORIOS OPCIONALES

Una amplia variedad de accesorios profesionales Meade están disponibles para los telescopio de la serie DS-2000. La calidad superior de estos accesorios iguala la alta calidad de los telescopios. Consulte el Catálogo General de Meade para conocer los detalles de estos y otros accesorios.

Oculares (diámetro de 1,25" [31,75 mm]): para mayor o menor magnificación en cualquier telescopio Meade DS-2000, los oculares Acromáticos Modificados (MA) de tres elementos están disponibles en longitudes focales de 9, 12, 25 y 40 mm, ofreciendo un amplio nivel de resolución de imágenes y corrección de color a precios económicos. De forma alternativa, de precios un poco mayores, los oculares Meade Plössl Serie 3000 de cuatro elementos le dan mayor campo de visión con una excelente corrección periférica y están disponibles en longitudes focales de 5, 6,7, 9,5, 16, 25 y 40 mm

Lente Barlow #126 (1,25" [31,75 mm]): Duplica el poder de cada ocular manteniendo una excelente corrección de la imagen. Por ejemplo, un ocular de 9 mm en el telescopio DS-2070 da como resultado 78X; cuando se utiliza en conjunto con el Barlow #126 2X, el mismo ocular da como resultado 156X.

Prisma Erector a 45° #928: El diagonal a 90° estándar con los refractores DS-2000 da como resultado una imagen erecta pero invertida de derecha a izquierda. El Prisma Erector a 45° #928 (1,25" [31,75 mm]) orienta la imagen correctamente para aplicaciones terrestres y ofrece un cómodo ángulo de observación a 45°.

Adaptador para Cámara Fotográfica: Los telescopios DS-2000 pueden ser utilizados para fotografiar a través del telescopio la Luna y planetas así como objetos terrestres. Para fotografiar con proyección de ocular, utilice el Adaptador Básico para Cámara (1,25" [31,75 mm]). Vea el Catálogo General de Meade para más información.

Enfocador Electrónico #1240: Se instala con rapidez y facilidad a cualquier telescopio DS-2000 y ofrece un enfoque suave y libre de vibraciones. Cada enfocador incluye dos velocidades: lenta y rápida. El controlador de mano estándar recibe una batería 9 V (no incluida); de manera alterna, el enfocador puede ser controlado por medio del Controlador Autostar o el Controlador Electrónico.

Juego de Cables #506 y Software Astrofinder: Despliegue más de 10 000 maravillas celestes – galaxias, nebulosas, cúmulos estelares, estrellas y planetas – en su PC, permitiéndole, hasta a un principiante, localizar e identificar objetos para observar con el telescopio o imprimir mapas del cielo para utilizarlas en las sesiones de observación. Funciona en cualquier PC bajo Windows. El juego de Cables Conectores permite conectar cualquier telescopio DS-2000 al Autostar y a la PC par descargar nuevos programas (actualizaciones) o para actualizar las posiciones de los satélites o de otros objetos celestes. Este juego de cables se incluye con cada paquete de Software Astrofinder.

Ocular Electrónico: Ahora cualquiera puede compartir las vistas de un ocular – de la Luna, los planetas, las estrellas, y los objetos terrestres – en la pantalla de un televisor. La salida de vídeo NTSC integrada permite conexiones directas a monitores, grabadoras de vídeo (VRC), cámaras de vídeo y en alguna PC que tengan esta entrada. El modo de captura continua le permite grabar imágenes astronómicas y terrestres en tiempo real. Este generador de imagen CMOS fácil de instalar y de utilizar cuenta con un control de contraste incluido para las variantes condiciones de iluminación, y se puede utilizar en barriles de 1,25" (31,75 mm) y 0,965" (24,5 mm).

Autostar Suite con el LPI (Generador de Imágenes Lunares y Planetarias): convierte su DS2000, Autostar y PC en un instrumento astronómico muy poderoso y fácil de usar. Capture estupendas imágenes de la Luna, planetas y objetos de cielo profundo brillantes, mas objetos terrestres en su primer intento. Con el software "Magic Eye" que le ayuda al enfoque. El Software del Autostar Suite incluye herramientas de planetario y generación de imágenes. Incluye cable para conectar su telescopio a su PC.

CUIDADO DE SU TELESCOPIO

Su telescopio DS-2000 es un instrumento óptico de precisión diseñado para darle una satisfacción de por vida. Con el buen cuidado y respeto que requiere cualquier instrumento óptico, su telescopio muy rara vez, si acaso, requerirá mantenimiento de fábrica. Las recomendaciones de Mantenimiento incluyen:

- a. Evite limpiar la óptica del telescopio: un poco de polvo en la superficie del lente frontal no causa virtualmente ninguna degradación de la calidad de la imagen y no debe considerarse como una razón para limpiar el lente.
- b. Cuando sea absolutamente necesario, el polvo del lente frontal debe ser removido con movimientos suaves de una brocha de pelo de camello o eliminadas con aire a presión (con una jeringa para los oídos – disponible en cualquier farmacia). NO UTILICE un limpiador comercial para cámaras fotográficas.
- c. Materiales orgánicos (como las huellas digitales) en el lente frontal pueden ser removidas con una solución de 3 partes de agua destilada con 1 parte de alcohol iso-propílico. También le pude agregar una gota de jabón lava trastes biodegradable a un litro de agua destilada. Utilice toallas faciales suaves y blancas y realice movimientos cortos y suaves. Cambie de toalla continuamente.

PRECAUCION: No utilice toallas con aroma porque muy seguramente dañará su óptica.

- d. Si lo utiliza en el exterior en una noche húmeda, es probable que se presente condensación en las superficies del telescopio. Mientras que la condensación normalmente no causa daño alguno al telescopio, es recomendable que todo el telescopio sea secado con una tela seca antes de guardarlo. De cualquier manera, NO limpie las superficies ópticas. Es más recomendable simplemente someter el telescopio a una corriente de aire seco y tibio, para que las superficies ópticas se sequen por sí solas.
- e. Si su telescopio no va a ser utilizado por un largo período de tiempo, probablemente por un mes o más, se recomienda quitarle las baterías. Las baterías, si se dejan en el telescopio por un período largo, pueden chorrear, causando daños a los circuitos electrónicos del telescopio.
- f. No deje el telescopio dentro de un vehículo cerrado en un día caliente de verano; el calor excesivo puede dañar la lubricación interna o los circuitos electrónicos del telescopio.

Colimación

Los telescopios refractores DS-2000 están alineados ópticamente (colimados) desde la fábrica antes de su embarque, y no será necesario recolimar la óptica de estos modelos. El modelo reflector DS-2114 y DS-2130 también están alineados de fábrica, mas sin embargo ocasionalmente requerirán una realineación, particularmente si el telescopio ha sido sometido a un manejo rudo. Antes de utilizar uno de estos últimos modelos por primera ocasión, revise la alineación de la óptica como se describe en esta sección. Una buena alineación es esencial para el buen desempeño del telescopio, y en cualquier caso el procedimiento de alineación no es difícil de seguir.

Los sistemas ópticos de los telescopios reflectores DS-2000, incluyen las siguientes partes: Espejo primario (1, Fig. 23); espejo secundario (2, Fig. 23); soporte del espejo secundario (3, Fig. 23); venas (o araña) del espejo secundario (4, Fig. 23) y (1, Fig. 24); tornillos de ajuste del espejo primario (5, Fig. 23). La imagen del telescopio llega al punto de foco en (6, Fig. 23).

- Confirmando la Alineación: Para confirmar la alineación asómese por el tubo del enfocador (1, Fig. 26) quitando previamente el ocular. El perímetro del tubo del enfocador enmarca los reflejos del espejo primario (2, Fig. 26), del espejo secundario (3, Fig. 26), las tres venas de la araña (4, Fig. 26) soportando al espejo secundario, y el ojo del observador (5, Fig. 26). Si la óptica esta alineada adecuadamente, todas estas reflexiones aparecen concéntricas (centradas), tal y como se muestra en la Fig. 26. Cualquier desviación de esta concentricidad de cualquiera de las partes que se observan con relación al ojo, requerirá de ajustes al soporte del espejo secundario (Fig. 24) y/o de la celda del espejo primario (Fig. 25), como se describe a continuación.
- Ajustes de las venas de la araña del secundario: Si el espejo secundario (1, Fig. 27) se ve a la izquierda o a la derecha del centro con relación al tubo del enfocador (2, Fig. 27), afloje un poco las tuercas de ajuste de las venas de la araña del espejo secundario (1, Fig.

24) que se localizan por la parte exterior del tubo y a la altura del soporte del espejo secundario. Mueva todo el soporte del espejo secundario hasta que se vea centrado desde el tubo del enfocador – esto requerirá que afloje unas de las tuercas de ajuste mientras que aprieta otras. Solamente realice ajustes con dos tuercas a la vez, hasta que el espejo secundario se vea centrado desde el tubo del enfocador, tal y como se ve en la Fig. 28. Una vez que hava logrado esto asegúrese que las tres tuercas de ajuste estén apretadas.

- 3. Ajustes del soporte del espejo secundario: Si el espejo secundario (1, Fig. 28) está centrado con respecto al tubo del enfocador (2, Fig. 28), pero el espejo primario es visible parcialmente, en el reflejo (3, Fig. 28), los tres tornillos de ajuste (de cabeza Phillips "+") del espejo secundario (2, Fig. 24) deben ser aflojados ligeramente hasta el punto que el soporte del espejo secundario (3, Fig. 24) pueda rotar sobre su eje paralelo al tubo óptico. Tomo el soporte del espejo secundario con su mano (¡evite tocar la superficie del espejo!) y rótelo hasta que, mirando por el tubo del enfocador, pueda ver el espejo primario lo más centrado posible en el reflejo del espejo secundario. Con la rotación del soporte del espejo secundario no su mejor posición posible, apriete los tres tornillos phillips (2, Fig. 24) para asegurar la posición del soporte. Entonces, de ser necesario, lleve a cabo los ajustes necesarios en estos mismos tres tornillos phillips para corregir la inclinación del espejo secundario, hasta que todo el espejo primario se vea centrado en el reflejo del espejo secundario alineado, la imagen a través del tubo del enfocador se parecerá a la Fig. 29.
- Ajustes en el espejo primario: Si el espejo secundario (1, Fig. 29) y el reflejo del espejo 4. primario (2, Fig. 29), aparece centrado desde el tubo del enfocador (3, Fig. 29), pero el reflejo de su ojo y el reflejo del espejo secundario (4, Fig. 29) aparecen fuera del centro, entonces la inclinación del espejo primario requiere de ajuste, por medio de los tres tornillos phillips en la celda del espejo primario (3, Fig. 25). Estos tornillos de ajuste del primario se localizan detrás del espejo primario, en la parte trasera del tubo óptico. Vea la Fig. 25. Antes de ajustar los tornillos del espejo primario, desatornille – de varias vueltas (avúdese con una llave hexagonal o unas pinzas) los tres tornillos hexagonales que actúan como candado del espejo primario (2, Fig. 25) que también se localizan en la cara exterior de la celda del espejo secundario y que se acomodan de manera alternada con los tornillos (phillips) de ajuste del primario. Entonces, por prueba y error gire los tornillos phillips (3, Fig. 25), uno a uno, hasta que se familiarice con los movimientos que cada uno de éstos genera observando el movimiento desde el tubo del enfocador. (Un asistente es de gran ayuda en esta operación). Lleve a cabo los ajustes necesarios hasta que logre centrar las imágenes como los muestra en la Fig. 26. Una vez logrado esto, apriete nuevamente los tres tornillos hexagonales (2, Fig. 25) para asegurar el espejo primario en posición.

El sistema óptico del telescopio ahora ya está alineado, o colimado. Esta colimación debe ser verificada eventualmente. De ser necesario, lleve a cabo los ajustes pertinentes, siguiendo los pasos 1,2 y/ó 3, para mantener la óptica alineada.

Servicio al Cliente de Meade

Si tiene cualquier duda con respecto a su telescopio DS-2000, contacte al Departamento de Servicio a Clientes de Meade Instruments en:

Teléfono: (949) 451-1450

Fax: (949) 451-1460

Los horario de Servicio al Cliente son de 8:30 AM a 4:40 PM Hora del Pacífico, Lunes a Viernes. En el poco probable caso que su telescopio DS-2000 requiera de reparación o mantenimiento en nuestra fábrica, escriba o llame al Departamento de Servicio a Clientes de Meade antes de enviar su telescopio, y háganos saber los detalles particulares y la naturaleza del problema, así como su nombre, dirección y teléfono. La mayoría de los sucesos pueden ser resueltos por teléfono, evitando el envío del telescopio a nuestra fábrica.

En México Consulte a:

Kosmos Scientific de México, S.A. de C.V. Loma de Los Pinos 5712 La Estanzuela Monterrey, N.L. 64988 Tels/Fax 81 8298-9716 y 81 8298-9717 www.kosmos.com.mx

ESPECIFICACIONES

DS-2090MAK

Diseño óptico	. Maksutov-Cassegrain
Apertura	. 90 mm
Longitud focal	. 1 250 mm
Relación focal	. f/13,8
Foco más cercano	. 3,5 m
Resolución	. 1,3 segundos de arco
Recubrimientos ópticos antireflejantes	incluidos
Magnitud Estelar Límite Visual	. 11,7
Escala de imágenes	.1.16°/pulgada
Máxima magnificación con los oculares incluidos	
SP 26 mm	.48X
SP 9,7 mm	. 129X
Buscador	. de punto rojo
Montura	Atacimutal motorizada, un brazo
Alineación	Altacimutal
Velocidades de movimiento	. 2x sideral hasta 4,5% en 9 incrementos
Tripié	Aluminio de altura ajustable, con charola
Dimensiones del tubo óptico	. 108 mm D x 356 mm L
Baterías	.8 tamaño AA 1,5 V
Accesorios	. Brújula y Nivel de Burbuja

DSX-2102MAK

Maksutov-Cassegrain
1920 mm
1 356 mm
f/13,3
3,5 m
1,3 segundos de arco
incluidos
11,7
1.16°/pulgada
52X
139X
de punto rojo
Atacimutal motorizada, un brazo
Altacimutal
2x sideral hasta 4,5°/s en 9 incrementos
Aluminio de altura ajustable, con charola
120 mm D x 356 mm L
8 tamaño AA 1,5 V
Brújula y Nivel de Burbuja

Autostar

Procesador	68HC11, 8MHz
Memoria flash	512KB, recargable
Teclado	
Pantalla	
Luz de fondo	LED Roja
RS-232	Sí
Cable extensión	610 mm
Base de datos	más de 1 400 objetos
Tamaño	
Largo	142,2 mm
Ancho (a la altura de la pantalla)	78,2 mm
Grosor (en el extremo del conector)	53,5 mm
Peso	159 g

APÉNDICE A

Coordenadas Celestes

Es conveniente entender la manera de localizar objetos celestes al tiempo que se mueven en el cielo.

Un sistema de coordenadas celestes fue creado para que las estrellas se plasmaran sobre una esfera imaginaria alrededor de la Tierra. Este sistema de mapeo es similar al sistema de latitud y longitud de los mapas de la Tierra.

En un mapa de superficie terrestre, las líneas de longitud se dibujan de Norte a Sur y las de latitud de Este a Oeste y paralelas al ecuador. De manera similar, las líneas imaginarias en el cielo se dibujan para formar coordenadas de latitud y longitud, pero en este caso se llaman **Ascensión Recta y Declinación**.

El mapa celeste también contiene dos polos y un ecuador de la misma manera que el mapa de la Tierra. Los polos de este sistema de coordenadas están definidos por los puntos donde los polos Norte y Sur de la Tierra (o sea el eje de la Tierra), si se extienden hacia el infinito, cruzarían la esfera celeste. Por lo tanto, el Polo Norte Celeste (1, Fig. 30) es el punto en el cielo donde el Polo Norte intercepta la esfera celeste. Este punto en el cielo se localiza muy cerca de la estrella del Norte, Polaris. El ecuador celeste (2, Fig. 30) es una proyección del ecuador de la tierra en la esfera celeste.

De la misma manera como un objeto en la Tierra se localiza por su latitud y longitud, los objetos celestes también se pueden localizar usando su Ascensión Recta y Declinación. Por ejemplo, puede localizar la Cd. de Los Ángeles, California, por su latitud (+34°) y longitud (118°). De manera similar, puede localizar la constelación de la Osa Mayor por su Ascensión Recta (11 h) y su Declinación (+50°).

- Ascensión Recta (A.R.): Esta versión celeste de la longitud se mide en unidades de horas (h), minutos (min) y segundos (s) en un "reloj" de 24 horas (de manera similar en que la Longitud define los usos horarios en la Tierra). La línea "cero" fue definida arbitrariamente y pasa sobre la constelación de Pegaso - algo así como el meridiano cósmico de Greenwich. El rango de coordenadas A.R. van de 0 h 00 min 00 s hasta 23 h 59 min 59 s Existen 24 líneas primarias de A.R., localizadas a intervalos de 15º a lo largo del ecuador celeste. Conforme los objetos se encuentran más y más al Este de la línea 00 de A.R., su correspondiente coordenada será de un valor mayor.
- Declinación (Dec.): Esta versión celeste de la latitud se mide en grados, minutos y segundos (por ejemplo 15° 27' 33"). Las posiciones al Norte del Ecuador Celeste se indican con un signo positivo ("+") (el Polo Norte Celeste es +90°). Las posiciones al Sur del Ecuador Celeste se indican con un signo negativo ("-") (el Polo Sur Celeste es -90°). Cualquier punto sobre el Ecuador Celeste (como es el caso de la constelación de Orión, Virgo y Acuario) se dice que su Declinación es cero, y se escribe 0° 0' 0".

Localización del Polo celeste

Para prepararnos en un sitio de observación, tome nota de por dónde sale el Sol (Este) y por

dónde se pone (Oeste). Para apuntar con precisión al polo, encuentre la Estrella Polar del Norte (Polaris) utilizando a la Osa Mayor como una guía (**Fig. 31**).

Nota Importante: Para casi todas las necesidades de observación astronómica, un acomodo aproximado es aceptable. NO ponga demasiada atención al querer llevar a cabo una alineación demasiado precisa ya que esto interferirá con el goce básico de su telescopio.

APÉNDICE B

RECOMENDACION: Ingresando coordenadas A.R. y declinación sin el uso delos MENÚES:

Si no desea navegar por los MENÚES. hav una forma más directa para ingresar coordenadas. Presione y mantenga el botón <MODE> por dos segundos o más. Aparecerán las coordenadas de A.R. y Declinación. Presione GO TO. Aparecerá "Object Position" y un iuego de coordenadas. Ingrese las coordenadas de cualquier objeto celeste con la avuda de los botones de dirección y escribiendo sobre las coordenadas originales en pantalla. Tan pronto como las nuevas coordenadas hayan sido ingresadas, el Autostar reorienta el telescopio al nuevo sitio en el cielo. Para que este procedimiento funcione adecuadamente. el telescopio debió haber sido inicializado correctamente (vea la página 17).

De cualquier manera, si desea grabar las coordenadas de un objeto en la memoria, utilice el método que se describe a la derecha.

Uso del Autostar para Búsqueda de Objetos que no están en la Base de Datos

Aunque el Autostar conoce la ubicación de mas de 1 400 objetos y le permite localizar automáticamente estrellas, nebulosas, galaxias, etc., existe la posibilidad de que Ud. desee ver objetos que no están la base de datos. El Autostar posee una función que le permite localizar cualquier objeto siempre y cuando Ud. conozca sus coordenadas. Vaya a la opción "User: Objects" del Menú de Objetos, Ingrese las coordenadas y el Autostar reorientara el telescopio hacia la posición requerida.

Para hacer uso de esta función, debe Ud. Conocer las coordenadas celestes (Ascensión Recta y Declinación) del objeto que desea localizar. Para conseguir estos datos, puede consultar bibliotecas, librerías, libros de astronomía, CD Roms y revistas especializadas, como *Sky & Telescope* y *Astronomy*. Los objetos o coordenadas que ingrese formarán parte de su propia base de datos permanente, llamada "User Objects" (Objetos del Usuario).

Para ingresar coordenadas de un objeto nuevo, vaya al Menu de Objetos y seleccione la opción "User: Objects":

- 1. Asegúrese de haber inicializado el Autostar y que el telescopio este alineado.
- 2. Después de haber alineado el telescopio, aparece en pantalla "Select Item: Object" (de no ser así, oprima el botón de desplazamiento hasta que aparezca. Presione <ENTER>.
- 3. Aparece "Object: Solar System". Oprima el botón de desplazamiento hasta que aparezca "Obect: User Object". Oprima <ENTER>.
- 4. Aparece "User Object: Select". Oprima el botón de desplazamiento una vez. Aparece "User Object: Add". Oprima <ENTER>.
- Aparece "NAME" en el renglón superior y un caracter pulsante en el renglón inferior,. Utilice las Flechas de Dirección para escribir el nombre del nuevo objeto que será ingresado a la base de datos. Cuando haya terminado presione <ENTER>.
- 6. Aparece "Right Asc.: 00.00.0". Utilice las Flechas de Dirección para ingresar la Ascensión Recta correspondiente al nuevo objeto. Cuando termine oprima <ENTER>.
- Aparece "Declination: +00°.00". Utilice las Flechas de Dirección para ingresar la Ascensión Recta correspondiente al nuevo objeto. Si necesita corregir el "+" por "-", oprima el botón de desplazamiento. Cuando termine oprima <ENTER>.
- 8. El Autostar le pide que Ud. Ingrese el tamaño del nuevo objeto (en minutos de arco). Este dato es opcional. Si no desea ingresar información, simplemente oprima <ENTER>. Si desea ingresar el valor de tamaño utilice las flechas de Dirección. Oprima <ENTER> para continuar.
- El Autostar le pide que ingrese el brillo (la magnitud) del nuevo objeto. Este dato también es opcional. Si desea agregar esta información, utilice las Flechas de Dirección. Oprima <ENTER> para dar por terminada esta rutina. Aparece "User Object: Add".

Si desea que el Autostar localice el nuevo objeto:

En este procedimiento, seleccionará un objeto de la lista de Objetos del Usuario le pedirá al Autostar que apunte el telescopio al objeto.

- 1. Teniendo en pantalla "User Object: Add", oprima una vez el botón de desplazamiento Abajo. Aparece "User Object: Select". Oprima <ENTER>.
- 2. De ser necesario, oprima el botón de desplazamiento hasta que aparezca el objeto que desea observar. Oprima <ENTER>.
- 3. El nombre del objeto y sus coordenadas aparecen en pantalla.
- 4. Oprima <GO TO> y el Autostar reorientara el telescopio hacia el objeto.

APENDICE C

Observación de Satélites

En este procedimiento, preparará su telescopio para observar el paso de los satélites.

- 1. Vaya al menú "Object: Satellite" y presione <ENTER>.
- 2. Use los botones de desplazamiento para recorrer la lista de satélites.
- 3. Seleccione un satélite de la lista y presione <ENTER>.
- 4. Los mensajes "Calculating..." y luego "Traking..." aparecerán. Si el satélite va a pasar, aparece "Located".
- 5. Use los botones de desplazamiento para desplegar la información del pase: "aos" (adquisición de señal) y "los" (perdida de señal). Si resta "aos" de "los", puede calcular el tiempo que el satélite estará visible. También se muestra la información de la sitio.
- El mensaje "Alarm" se muestra después de mostrar la información del sitio. Presione <ENTER> y el Autostar automáticamente fija la alarma para sonar un minuto antes que el satélite haga su aparición programada. Puede entonces regresar a sus observaciones regulares hasta que suene la alarme.
- Cuando suene la alarma, regrese al menú "Satellite" y presione los botones de desplazamiento hasta que el satélite que busca aparezca en la parte superior de la pantalla.
- 8. Presione <GO TO> y el Autostar mueve el telescopio al lugar donde aparecerá el satélite. El motor se detiene y aparece en la pantalla una cuenta regresiva.

NOTA: Si la posición aparición programada del satélite está obstruida (por algún edificio, árbol, montaña, etc.), presione <ENTER> y el Autostar comienza a mover el telescopio a lo largo de la trayectoria calculada del satélite. Cuando el telescopio libre la obstrucción, presione <ENTER> de nuevo para poner el telescopio en pausa, entonces continúe con este procedimiento.

- 9. Con 20 segundos en el temporizador, comience a observar a través del buscador del telescopio hasta que el satélite entre en el campo de visión.
- 10. Cuando el satélite entre al campo del buscador, presione <ENTER>. El telescopio comienza a seguir al satélite.
- 11. Utilice las flechas de movimiento del Autostar para centrar el objeto en el buscador, entonces observe a través del ocular para ver el objeto.

Las órbitas de los satélites cambian y nuevos satélites (incluyendo al Transbordador Espacial) son lanzados al espacio. Visite el sitio web de Meade (<u>www.meade.com</u>) aproximadamente una vez al mes para actualizar la información y obtener instrucciones de cómo descargar esta información a su Autostar. Si los parámetros orbitales tienen más de un mes, el paso del satélite puede no acontecer en el momento calculado por el Autostar. La descarga requiere del uso del juego de cables y software Astrofinder #506. Vea la sección de "ACCESORIOS OPCIONALES" en la página 28.

NOTA: La observación de satélites es un reto emocionante. La mayoría de los satélites están en órbitas bajas, viajando aproximadamente a 28 150 km/h . Cuando son visibles, se mueven rápidamente a través del cielo y solamente están en el campo de visión por unos minutos. Se ven mejor cerca del amanecer o del anochecer cuando el cielo está oscuro. Observando a media noche puede ser muy problemático debido a que el satélite puede pasar encima de usted, pero no ser visto debido a que se encuentra en la sombra de la Tierra.

APÉNDICE D

Ajuste del Sistema de Motores (Train Drive)

Entrene el sistema de motores de su telescopio utilizando el Autostar. Siga este procedimiento si experimenta problemas de precisión al localizar objeto de manera automática. La **Fig. 32** muestra el procedimiento completo de entrenamiento (Training).

NOTA: Utilice un objeto terrestre, como un poste telefónico o una luminaria, para ajustar el sistema de motores. Realice este ejercicio una vez cada 3 a 6 meses para asegurar la mayor nivel de precisión de localización en el telescopio.

APÉNDICE E

Baterías

Cambie la batería del buscador de punto rojo con una batería CR2032 de litio. La batería se localiza al fondo del buscador de punto rojo. Necesitará deslizar su uña o punta de desarmador por debajo de la batería para sacarla.

Cambie la batería del reloj interno con una CR2032 de litio. Esta batería se localiza en el compartimiento de baterías.

Ambas baterías las puede adquirir en tiendas de cámaras fotográficas.

APÉNDICE F

Ajuste manual de la fecha a Marzo 6 del 2005

- 1. Encienda el telescopio colocando el interruptor general en la posición ON.
- 2. Presione el botón que se le pide una vez que ha leído y entendido el mensaje de no ver al Sol. Presione <ENTER> para brincar el mensaje de Preparar la Operación.
- 3. Presione <MODE> varias veces hasta que aparezca "Select Item: Object" en pantalla.
- Presione varias veces el botón de desplazamiento ▼ hasta que aparezca "Select Item: Setup" (Selec Item: Configuración). Presione <ENTER>.
- 5. Presione varias veces el botón de desplazamiento ▼ hasta que aparezca "Setup: Date" (Configuración: Fecha). Presione <ENTER>.
- 6. Verá "<ENTER> Date: 01-JAN-2003" (Intro. Fecha: 01-ENE-2003) ó una fecha distinta. El "0" tendrá el cursor. Presione la Flecha Derecha ▶ para moverse a la siguiente posición.
- 7. Ahora el segundo dígito tiene el cursor. Presione el Botón de desplazamiento ▲ hasta que el "6" se muestre en esta posición. Presione la Flecha Derecha ► para moverse a la siguiente posición.
- Ahora el mes tendrá el cursor. Presione el Botón de desplazamiento ▲ hasta que "MAR" esté en la pantalla. Presione la Flecha Derecha ► para moverse a la siguiente posición.
- 9. Ahora el "2" del año tendrá el cursor. Utilice los botones de desplazamiento y la flecha de dirección ► para moverse en cada posición y colocar el año 2005. Ahora la pantalla muestra "06-MAR-2006"

Ajuste manual de la hora a las 11:30 p.m.:

Si acaba de ingresar la fecha, verá ""Setup: Date" (Configuración: Fecha). Presiones el botón de desplazamiento ▼ una vez y verá "Setup: Time" (Configuración: Hora). Entonces proceda con el paso #6.

- Si no ha encendido el telescopio, inicie en el paso #1.
- 1. Encienda el telescopio colocando el interruptor general en la posición ON.
- Presione el botón que se le pide una vez que ha leído y entendido el mensaje de no ver al Sol. Presione <ENTER>
 para brincar el mensaje de Preparar la Operación.
- 3. Presione <MODE> varias veces hasta que aparezca "Select Item: Object" en pantalla.
- 4. Presione varias veces el botón de desplazamiento ▼ hasta que aparezca "Select Item: Setup" (Selec Item: Configuración). Presione <ENTER>.
- 5. Presione varias veces el botón de desplazamiento ▼ hasta que aparezca "Setup: Time" (Configuración: Hora). Presione <ENTER>.
- Verá "<ENTER> Time: 08:00:00AM" (Intro. Hora: 08:00:00AM) ó una hora distinta. El "0" tendrá el cursor. Presione el Botón de desplazamiento ▲ hasta que el "1" se muestre en esta posición. Ahora presione la Flecha Derecha ► para moverse a la siguiente posición
- Ahora el segundo dígito tiene el cursor. Presione el Botón de desplazamiento ▲ hasta que el "1" se muestre en esta posición. Presione la Flecha Derecha ► para moverse a la siguiente posición.
- Ahora el tercer dígito tendrá el cursor. Presione el Botón de desplazamiento ▲ hasta que "3" esté en la pantalla. Presione la Flecha Derecha ► para moverse a la siguiente posición.
- 9. Presione la Flecha Derecha ► para moverse a la posición de AM/PM. Presione el Botón de desplazamiento ▲ hasta que "PM" esté en la pantalla. Presione <ENTER>.
- 10. Ahora la pantalla muestra "11:30:00PM". La hora ha sido ajustada.

ASTRONOMIA BASICA

A principios del siglo XVII, el científico italiano Galileo, utilizando un telescopio menor que su DS-2000, volteó hacia el cielo en lugar de ver hacia los distantes árboles y montañas. Lo que vio y de lo que se dio cuenta, ha cambiado para siempre la manera que la humanidad piensa acerca del universo. Imagine la manera en que esto debió de haber sido al ser el primer hombre en ver lunas revoloteando alrededor de Júpiter o ver las cambiantes fases de Venus. Como resultado de sus observaciones, Galileo supuso correctamente el movimiento y posición de la Tierra alrededor del Sol, y con esto, dio nacimiento a la astronomía moderna. Todavía el telescopio de Galileo era muy rudimentario y no pudo definir los anillos de Saturno.

Los descubrimientos de Galileo fijaron las bases para el entendimiento del movimiento y la naturaleza de los planetas, estrellas y galaxias. Con estas bases, Henrietta Leavitt determinó la manera de medir las distancias a las estrellas. Edwin Hubble nos dio una probadita hacia el posible origen del universo, Alberto Einstein descubrió la relación crucial entre el tiempo y la luz, y los astrónomos del siglo 21 están actualmente descubriendo planetas alrededor de estrellas fuera de nuestro sistema solar. Casi diariamente, utilizando equipos sucesores del telescopio de Galileo, tales como el Telescopio Espacial Hubble y el Telescopio de Rayos X Chandra, más y más misterios del universo están siendo comprobados y entendidos. Estamos viviendo en la era dorada de la Astronomía.

A diferencia de otras ciencias, la astronomía recibe contribuciones de aficionados. Mucho del conocimiento que tenemos hoy día de los cometas, lluvias de estrellas, estrellas variables, la Luna y nuestro Sistema Solar viene de observaciones realizadas por astrónomos aficionados. Por lo que al mirar a través de su telescopio DS-2000, tenga presente a Galileo. Para él, un telescopio no era solamente una maquina hecha con metal y cristal, si algo aún mayor – una ventana a través de la cual podía observar u descubrir el latiente corazón del universo.

Glosario del Autostar

Le recomendamos hacer uso del Glosario del Autostar. El Menú de Glosario le ofrece una lista de definiciones de conceptos astronómicos básicos. Tenga acceso directo al Glosario por medio del menú o de las palabras en hipertexto [en corchetes] integradas en los mensajes del Autostar. Vea "**Menú de Glosario**", página 25, para más información.

Objetos Espaciales

A continuación se enlistan algunos de los muchos objetos astronómicos que se pueden ver con los telescopios de la serie DS-2000:

La Luna

La Luna está, en promedio, a 380 000 km de la Tierra y se observa mejor durante su fase creciente cuando la luz del Sol llega a la superficie de la Luna en un ángulo que provoca sombras y agrega un sentido de profundidad a lo que se observa (**Fig. 34**). No se ven sombras durante la fase de luna llena, causando que su superficie se vea plana y sin aspectos interesantes para un telescopio. Asegúrese de utilizar un filtro de densidad neutra cuando observe la Luna. Este no solamente protege sus ojos del intenso brillo de la Luna, sino que también ayuda a mejorar el contraste, ofreciéndole vistas más dramáticas.

Detalles brillantes se pueden observar en la Luna, incluyendo cientos de cráteres y mares que se describen a continuación:

Cráteres: son sitios redondos de impactos de meteoritos que cubren la mayoría de la superficie lunar. Con una atmósfera casi nula en la Luna, no existe el intemperismo climático, por lo que los impactos meteóricos se mantienen a través del tiempo. Bajo estas condiciones, los cráteres pueden durar millones de anos.

Mares: son áreas planas y oscuras dispersas por la superficie lunar. Estas vastas áreas son los remanentes de depresiones resultado de antiguos impactos de cometas o meteoritos que se rellenaron con lava del interior de la Luna.

Doce astronautas del programa Apolo dejaron sus huellas en la Luna, a fines de los años 60 y a principios de los 70. De cualquier manera, ningún telescopio sobre la Tierra puede ver esas huellas ni cualquiera de sus artefactos. De hecho, los detalles lunares más pequeños que se pueden distinguir sobre la superficie lunar con el telescopio mas grande de la Tierra son de unos 600 metros.

Los Planetas

Los planetas cambian de posición en el cielo al tiempo que orbitan alrededor del Sol. Para localizarlos para un cierto día o mes, consulte una revista periódica de astronomía, como *Sky & Telescope* o *Astronomy*. También puede consultar su Autostar para conocer algo más acerca del los planetas. Revise las opciones del menú "Object: Solar System". Cuando vea en

Fig. 34: La Luna. Observe las profundas sombras en los cráteres.

Fig. 35: Júpiter y sus cuatro lunas mas grandes. Las lunas se ven en distinta posición cada noche.

Fig. 36: Saturno tiene la mayor estructura de anillos del sistema solar.

Fig. 37: Las Pléyades es uno de los cúmulos abiertos mas bellos.

pantalla el planeta que desee conocer, presione <ENTER>. Utilice los botones de desplazamiento para revisar la información disponible, tal y como sus coordenadas, la hora a la que sale y se pone (**Recomendación:** ingrese una fecha en el menú Date y podrá saber si el planeta estará visible durante la noche que planea su observación, revisando las horas a la que sale y se pone). A continuación se mencionan los mejores planetas a observar con los telescopios de la serie DS-2000.

Venus un 90% del diámetro de la Tierra. Al tiempo que Venus orbita al Sol, los observadores pueden verlo en fases (creciente, menguante y llena), algo así como la Luna. El disco de Venus parece blanco debido a la luz que refleja del Sol por su gruesa capa de nubes que nos evita ver cualquier detalle en su superficie.

Marte tiene aproximadamente una mitad del diámetro terrestre, y se ve a través del telescopio como un pequeño disco naranja. Puede ser posible definir una manchita blanca e que es una de las capas polares del planeta. Aproximadamente cada dos años, cuando Marte esta muy cerca de la Tierra, se puede definir algunos detalles de su superficie.

Júpiter es el planeta más grande de nuestro sistema solar y es 11 veces más grande que la Tierra (en diámetro). El planeta se ve como un disco con bandas oscuras cruzando su superficie. Estas líneas son bandas de nubes en la atmósfera. Cuatro de las 16 lunas de Júpiter (lo, Europa, Ganímedes, y Calixto) se pueden ver como puntos semejantes a estrellas cuando se observa con un ocular de baja magnificación (**Fig. 35**). Estas lunas orbitan al planeta por lo que el numero visible de ellas (y su posición) varía de noche a noche.

Saturno tiene nueve veces el diámetro de la Tierra y parece un pequeño disco, con anillos que se extienden de un extremo al otro (Fig. 36). En 1610, Galileo, la primera persona que observo a Saturno con un telescopio, no entendió que lo que veía eran anillos. Por el contrario, el creyó que Saturno tenia "orejas". Los anillos de Saturno están compuestos de miles de millones de partículas de hielo, que van del tamaño de una partícula de polvo hasta el tamaño de una casa. La división mayor en los anillos de Saturno se conoce como la División Cassini, y es visible ocasionalmente. Titán, la luna más grande de las 18 que tiene Saturno, también puede verse como un punto brillante cerca del planeta.

Objetos de Cielo Profundo

Los mapas estelares pueden utilizarse para localizar constelaciones, estrellas individuales y objetos de cielo profundo. Algunos ejemplos de estos objetos de cielo profundo son:

Las Estrellas son grandes objetos gaseosos que tienen luz propia debido a la fusión nuclear que ocurre en su interior. Debido a las inmensas distancias de estas a nuestro sistema solar, todas las estrellas aparecen como puntos de luz, independientemente del telescopio que se utilice.

Las Nebulosas son vastas nubes interestelares de gas y polvo donde se forman estrellas. La mas impresionante de esta es M42, la Gran Nebulosa de Orión, una nebulosa de difusión que se ve como una pequeña nube gris. M42 se encuentra a 1 600 años luz de la Tierra.

Los Cúmulos Abiertos son grupos poco poblados de estrellas jóvenes, todas de reciente formación de la misma nebulosa de difusión. Las Pléyades (M45) es un cúmulo abierto que esta a 410 años luz de distancia (Fig. 37).

Las Constelaciones son grandes figuras imaginarias formadas por la unión de estrellas en el cielo y que fueran creadas por civilizaciones antiguas. En estas se representan animales, personas, objetos y dioses. Estas figuras son demasiado grandes para ser vistas a través de un telescopio. Para conocer acerca de las constelaciones, comience con una sencilla, como la Osa Mayor. Entonces, utilice un mapa celeste para explorar el cielo.

Las Galaxias son inmensos agrupamientos de estrellas, nebulosas y cúmulos estelares que están agrupados por su fuerza de gravedad. La forma más común es la de espiral (como nuestra propia Vía Láctea), pero otras también son elípticas, o hasta de forma irregular. La Galaxia de Andrómeda (M31) es la galaxia en espiral más cercana a la nuestra. Esta aparece como una mancha borrosa de luz con forma de puro. Esta a 2,2 millones de años luz de distancia en la constelación de Andrómeda, que se localiza a su vez entre la "W" de Casiopea y el gran cuadro de Pegaso.

NOTAS:

GARANTIA LIMITADA MEADE

Cada Telescopio Meade, así como cualquier accesorio, está garantizado por Meade Instruments Corp. ("Meade") de estar libre de defectos en materiales y manufactura por un período de UN AÑO de la fecha de su compra en los E.U.A. y Canadá. Meade reparará o remplazará el producto, o parte del producto, que se determine después de una inspección por Meade siempre y cuando el producto o parte sea devuelta a Meade, flete prepagado, con la prueba de compra. La garantía aplica al comprador original solamente y no es transferible. Los productos Meade adquiridos fuera de los Estados Unidos de Norteamérica no están incluidos en esta garantía, pero están cubiertos bajo garantías individuales ofrecidas por los Distribuidores Internacionales Meade.

Necesidad de un Número RGA: Antes de regresar cualquier producto o parte, debe obtener un Número de Autorización de Retorno (RGA), escribiendo a Meade o llamando al 949-451-1450. Cada parte o producto regresado debe incluir un escrito detallando la naturaleza de la falla, así como el nombre del propietario, un número telefónico, y una copia legible del comprobante de compra.

Esta garantía no es válida en caso que el producto haya sufrido de abuso o mal manejo, o si se detecta que se han intentado realizar reparaciones no autorizadas, o cuando el desgaste del producto es causa del uso normal del mismo. Meade específicamente se deslinda de daños especiales, indirectos, consecuenciales o pérdida de utilidades, que puedan resultar de la aplicación de esta garantía. Cualquier otra garantía no implicada aguí se limita al término de un año de la fecha de compra por el propietario original.

Esta garantía le otorga derechos específicos. Usted puede tener otros derechos que varían de estado a estado. Meade se reserva el derecho de cambiar las especificaciones del producto o de descontinuarlo sin previsión alguna.

GARANTIA KOSMOS

Kosmos Scientific de México, S.A. de C.V. (que en lo sucesivo se denomina Kosmos) garantiza este producto en todas sus partes y mano de obra, contra cualquier defecto de fabricación y funcionamiento durante el plazo de UN AÑO, a partir de la fecha de entrega final al cliente.

CONDICIONES

Para ser efectiva esta garantía solo se podrá exigir la presentación del producto y la garantía correspondiente debidamente sellada por el establecimiento que lo vendió. El único centro de servicio autorizado se encuentra en Loma de Los Pinos 5712 La Estanzuela, Monterrey, N.L. 64988 Tel. (81)8298-9716. Kosmos se compromete a reparar y/o reponer las piezas y componentes defectuosos sin cargo al consumidor, o, en caso de que, a criterio de la empresa, no sea válida la reparación, cambiar por uno nuevo, exactamente del mismo modelo o su similar. En el caso que el producto hava sido descontinuado, Kosmos se reserva el derecho de remplazar cualquier producto por unos de valor y funcionamiento similar (sin guesea nuevo necesariamente). Los gastos de transportación que se deriven del cumplimiento de esta póliza de garantía serán cubiertos por Kosmos. La garantía cubre al consumidor y no es transferible ni asignable a cualquier otro consumidor subsecuente/usuario. La garantía cubre únicamente a los Consumidores que havan adquirido el Producto en los Estados Unidos Mexicanos y que sean fabricados o importados por Kosmos. El tiempo de reparación en ningún caso será mayor a 30 días, contados a partir de la recepción del producto en Loma de Los Pinos 5712 La Estanzuela, Monterrey, N.L. 64988. SE RECOMIENDA CONSULTAR SU FALLA ANTES DE SOLICITAR UNA GARANTÍA YA QUE LA MAYOR DE LAS FALLAS APARENTES SE RESUELVEN CON UNA LLAMADA TELEFÓNICA Y SE ORIGINAN EN EL DESCONOCIMIENTO DEL USO DEL TELESCOPIO.

Para la adquisición de partes y accesorios, contacte al (81)8298-9716 o acudir a Kosmos en Loma de Los Pinos 5712 La Estanzuela, Monterrey, N.L. 64988 o busque a uno de sus distribuidores en www.kosmos.com.mx/distribuidores.

ESTA GARANTÍA NO TIENE VALIDEZ EN LOS SIGUIENTES CASOS

Si el producto no ha sido operado de acuerdo con el instructivo de uso en español que acompaña al producto. Si el producto ha sido utilizado en condiciones distintas a las normales. Si el producto hubiese sido alterado o reparado por personas no autorizadas por el importador o comercializador responsable específico

La única obligación de Kosmos será la de reparar o remplazar el producto cubierto, de acuerdo con los términos aquí establecidos. Kosmos expresamente no se hace responsable de pérdidas de utilidades, o daños directos o indirectos que puedan resultar de la violación de cualquier otra garantía, o por el uso inapropiado de los productos que vende Kosmos.

Kosmos se reserva el derecho de modificar o descontinuar, sin previa notificación, cualquier especificación, modelo o estilo de sus productos. Si se presentan problemas de garantía, o si necesita asistencia en el uso de este producto contacte a: Kosmos Scientífic de México, S.A. de C.V., Loma de Los Pinos 5712 La Estanzuela, Monterrey, N.L. 64988, Tels (81)8298-9716.

Esta garantía anula cualquier otra publicada con anterioridad. Esta garantía solamente es válida en productos vendidos por Kosmos o alguno de sus distribuidores. En el caso que adquiera un producto fuera del territorio nacional y que sea de las marcas que Kosmos representa en México. Los productos adquiridos fuera del territorio nacional tendrán que hacer uso de la garantía en el país de compra o, solicitar el servicio de reparación a Kosmos pagando los gastos inherentes de la reparación.

Modelo: _____ Distribuidor: _____

.....

Dirección:

Fecha de venta:

Firma: ______

Sello del Establecimiento:

Traducción hecha por Kosmos Scientific de México, S.A. de C.V. rev. 10/07

04/07